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COVERING A MAXIMUM NUMBER OF POINTS BY A FIXED NUMBER 
OF EQUAL DISKS VIA SIMULATED ANNEALING

Fani Tomova1, Stefan Filipov1, Ana Avdzhieva2

ABSTRACT

The presented paper considers the problem of covering a maximum number of n given points in the plane by 
m equal disks of radius r. A point is covered if it is inside one or more than one disk. The disks need to be placed 
in the plane in such a way that a maximum number of points are covered. To solve the problem, an objective 
function, called energy, is introduced in such a way that the greater the covering is, the lower the energy is. Thus, 
a configuration of disks with minimum energy is a configuration with maximum covering. To find a configuration of 
disks that minimizes the energy, a stochastic algorithm based on the Monte Carlo simulated annealing technique is 
proposed. The algorithm overcomes potential local minima, which, as shown in the paper, are quite likely to occur. 
The computational complexity of the algorithm is O(mn). The algorithm is tested on several cases demonstrating its 
efficiency in finding global minima of the energy, i.e. configurations with maximum covering.
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INTRODUCTION

This work considers the following problem. Let  n 
points be given in the plane. One needs to place m disks 
of radius r in such a way that a maximum number of 
the given points are covered. A point is covered if it lies 
inside one or more than one disk. The considered problem 
can be used as a basis to model many real life problems. 
For example, how to place m radio transmitters, each 
capable of covering a circular area of radius r, so that a 
maximum number of locations, e.g. towns, villages, etc., 
get covered.  Another example could be the positioning 
of an m anti-missile defense systems of range r so that a 
maximum number of places are protected. 

The considered problem is a variant of the unit 
disc cover problem (UDC) [1 - 3] and the minimum 
geometric disk cover problem (MGDC) [4, 5]. Such 
problems are known to be NP-complete [6]. For this 

reason, in the literature, mainly algorithms that find 
only approximate solutions are available [3, 5]. This 
work proposes a Monte Carlo algorithm that is capable 
of finding, with high degree of certainty, exact solutions 
of the problem. The computational complexity of the 
proposed algorithm is O(mn). 

In Fig. 1 you can see ten points and two disks of 
radius r. The disks are placed in such a way that seven 
points are covered. This is the maximum number of 
points that can be covered by two disks of radius r. 
However, this is not the only possible way to cover 
seven points by two disks of radius r. Since the points 
that are covered by a particular disk lie strictly inside this 
disk, the disk can be displaced by an arbitrary but small 
enough displacement getting another way of covering 
seven points, i.e. another solution. Hence, there are 
infinitely many solutions. Note that the answer to the 
question “what is the maximum number of points that 

Received 09 July 2023
Accepted 04 January 2024 DOI: 10.59957/jctm.v59.i2.2024.26



Journal of Chemical Technology and Metallurgy, 59, 2, 2024

458

can be covered” is unique, and in this case is “seven”. 
However, the number of solutions, i.e. the different ways 
to cover a maximum number of points, is infinite. 

The goal of this work is to develop an algorithm that 
places/arranges the disks in such a way that a maximum 
number of points are covered. Note that solving this 
problem automatically answers the question of what 
is the maximum number of points that can be covered.

Our approach to solving the problem is to introduce 
an objective function, called energy of the system, in 
the following way. The energy of a particular state of 
the system, i.e. a particular configuration of disks, is 
the sum of all uncovered point. That is, if there is one 
uncovered point, the energy is one, if there are two 
uncovered points, the energy is two, etc. Hence, a state 
(configuration) with a minimum energy is a state with a 
maximum number of covered points. Thus, the original 
problem reduces to finding a state with minimum energy, 
which is on optimization problem [7 - 10]. Since the 
optimization variables, namely the centers of the disks, 
are continuous variables, the problem is a continuous 
optimization problem. There are many powerful methods 
for continuous optimization but not all of them are 
appropriate for the solution of our problem. Since, 
as shown, the system may have many local minima, 
methods such as the method of steepest descent [11, 12] 
and other methods that make steps only in the direction 
of decreasing the energy, are not appropriate. Such 
methods, instead of getting the global minimum, may 
well get stuck in any of the local minima. 

To solve the optimization problem, a stochastic 
algorithm [13] based on the simulated annealing 
technique is proposed [14 - 20]. The simulated annealing 
is an importance sampling Monte Carlo method [21 - 
23]. The proposed algorithm overcomes local minima 
and, as demonstrated, successfully finds global minima 
of the system. 

EXPERIMENTAL

Mathematical formulation of the problem
Let n points Pi, i = 1,2,...,n with Cartesian 

coordinates (xi,yi) be given in the plane. In addition, 
a radius r is given and a positive integer number m 
(number of disks). Consider a disk Cj of radius r and 
center Oj. The Cartesian coordinates of Oj are 
. The distance between the point Pi and the center Oj is

 
                                                                                  (1) 
 
The point Pi is inside the disk Cj if rij<r                    (2)

If the point Pj is inside the disk Cj, then the disk 
covers the point. If the point is covered by one or more 
than one disk, then the point is covered. Otherwise the 
point is not covered. Total of m disks of radius r need to 
be placed in such a way that the number of points that 
are covered is maximum. Note that any arrangement/
configuration of disks is uniquely determined by the 
centers Oj, j = 1,2,...,m of the disks. Since all disks have 
the same radius, permuting the disks does not change 
the configuration. 

Let P be a point in the plane and ω  be a configuration 
of disks. The energy of the point P is defined as

 
                                                                                    (3)

where  means that P is covered by ω, while 
 means that P is not covered by ω. Thus, a point 

has energy zero if it is covered by the configuration of 
disks ω and one otherwise. The energy of the whole 
system is defined as the sum of the energy of all points:

                                            (4)

Fig. 1. Ten points and two disks of radius r. The disks cover 
a maximum number of points.
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Let Ω be the configuration space, i.e. the set of all 
possible configurations of disks. Let Emin be the global 
minimum of the energy, i.e. 

                                                 (5)

Now the problem under consideration can be 
formulated in the following way. Find a configuration 
of disks α such that 
E(α)=Emin,      (6)

The configuration α minimizes the energy and 
therefore it maximizes the number of covered points. 
It is a solution to our problem, but it is not the only 
solution. However, the number of points covered by α  
is the maximum number of points that can be covered 
by m disks of radius r.

Formulated in this way the problem is an 
unconstrained continuous optimization problem for 
finding the global minimum of the objective function E 
called energy of the system. As discussed, some of the 
existing optimization methods are not appropriate for the 
solution of this problem because the objective function 
E can have local minima. 

Existence of local minima
This section provides a constructive proof for the 

existence of local minima of the energy E. Consider the 
configuration shown in Fig. 2. The system has eleven 
points and two disks of radius r. Since three points are 
not covered, the energy of the system is three. Note that 
moving the right disk to any position will either increase 
the energy or not change it. The same applies to the left 
disk. Therefore, the state (configuration of disks) shown in 
Fig. 2 is a local minimum on the simulation graph. In other 
words, all neighboring states, that is states that can be 
reached in one step of the algorithm, have energy greater 
than or equal to the energy of this state. This holds for all 
possible algorithms for which only one disk is allowed to 
be moved at a time. The state in Fig. 3, however, covers 
nine points with two disks of radius r. This state is a global 
minimum and its energy is two. It can be reached from 
the local minimum in two steps. One way to reach it is 
first to move either of the disks in Fig. 2 to cover the 
three uncovered points and then to move the other disk 
to cover the six middle points. The first move results in 
an increase of energy.

The other way to reach the global minimum is first 

to move either of the disks in Fig. 2 to cover the six 
middle points and then cover the three top points by 
the other disk. In this case, too, the first move increases 
the energy of the system. Thus, if a naïve optimization 
simulation algorithm that always makes steps in the 
direction of decreasing the energy is used, then reaching 
the state in Fig. 2 will result in getting stuck in this state. 
Therefore, an optimization method that is capable of 
finding global minima in the possible presence of local 
minima is needed. One such method is the simulated 
annealing technique.

Fig. 2. Local minimum, Е = 3.

Fig. 3. Global minimum, E = 2.
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Simulated annealing algorithm
To solve the energy minimization problem, the 

following simulated annealing algorithm is proposed. 
First, the lowest and highest x and y coordinates of the 
given points are determined and a rectangular domain 
D in the xOy plane where the disks could be placed 
is defined. A disk outside the domain D cannot cover 
any of the given points because it is too far. Hence, 
the simulation is restricted to placing disks inside the 
domain D only. Next, an initial state, i.e. a configuration 
of disks lying in D, is chosen at random and its energy is 
calculated. Then, the following Monte Carlo simulation 
is performed. A disk is chosen at random. Then, a new 
positon is chosen at random. The change of energy ΔE 
resulting from moving the disk from its old position to 
its new position is calculated. If ΔE < 0, the move is 
accepted. If ΔE ≥ 0, the move is accepted with probability

 
Prob = exp(-ΔE/T),      (7)

where T is a parameter called temperature. The 
probability of rejecting the move is 1- Prob. The higher 
the increase ΔE of the energy, the greater the probability 
of rejecting the move. Note that decreasing the 
temperature T (called cooling) increases the probability 
of rejecting the move. If the move is accepted, the disk 
is moved to its new position and the energy of the new 
state is computed by adding  ΔE to E. Then, again, a disk 
is and new position are chosen at random and an attempt 
is made to move the disk. Thus, a certain number of 
attempts are made, e.g. 1000 or more, and anytime the 
move is accepted the chosen disk is moved to its new 
position and the energy  E is changed accordingly. Then, 
the temperature is lowered according to some cooling 
schedule, e.g. T becomes 2/3 of its current value, and 
the whole process is repeated. When the system has 
been cooled down enough, then, supposedly, the global 
minimum has been reached. The proposed algorithm is 
presented schematically in Fig. 4.

One of the main features of the proposed simulated 
annealing algorithm is that it allows moves that increase 
the energy. Thus, the system cannot get stuck in a local 
minimum, or is highly unlikely to do so. Of course, the 
successful reaching of the global minimum depends on 
the proper choice of the simulation parameters and the 
cooling schedule. The greater the number of attempts 
and the slower the process of cooling, the greater the 

Fig. 4. The proposed simulated annealing algorithm. In 
the algorithm rand is a random number between 0 and 1.
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Fig. 6. Solution A-1, E = 2.

probability that the final state reached in the simulation 
is the global minimum. One should also provide that 
the initial temperature is high enough and the final 
temperature is low enough. 

Provided that the area of the allowed domain D 
increases linearly with the number of points n, the 
number of moves that need to be made in order to sample 
efficiently the domain D with each of the m disks must be 
proportional to m. Hence, the computational complexity 
of the proposed algorithm is O(mn). 

Fig. 5. Initial state A, E = 16.

Fig. 7. Solution A-2, E = 2.

RESULTS AND DISCUSSION

This section presents results obtained by the proposed 
stimulated annealing algorithm. The set of 24 points 
shown in Fig. 5 is considered. First, in order to cover the 
point, 8 disks of radius 2 are used. One of the randomly 
generated initial states that is used is shown in Fig. 5. It is 
called initial state A and its energy is 16, that is, the initial 
number of uncovered points is 16. A number of simulations 
are performed using state A as initial state and each time 
a final state with energy 2, i.e. 2 uncovered points, is 
obtained. Two of the final states that were obtained are 
shown in Fig. 6 and Fig. 7. Likewise, for initial state B 
shown in Fig. 8, a number of simulations were performed 
and again final states with energy 2 were obtained. Two 
of these states are shown in Fig. 9 and Fig. 10. For any 
other arbitrarily generated initial state that was tried, finial 
states with energy 2 were obtained. Hence, E = 2 is the 
minimum energy that a configuration of 8 disks of radius 
2 can have. Therefore, the maximum number of points that 
can be covered is 22. The configurations of disks shown 
in Fig. 6, Fig. 7, Fig. 9, and Fig. 10 all cover 22 points, 
hence, all of them are solutions to the problem of maximal 
covering of the given 24 points by 8 disks of radius 2.

Results for 5 disks of radius 2 are shown in Fig. 11 
- Fig. 13. Obviously, the minimum of the energy is E=5 
and the maximum number of points that can be covered 
is 19. How the energy changes with temperature for the 
considered cases is shown in Fig. 14 - Fig. 16. Note that 
the temperature decreases as T = (2/3)k ; k = 0, 1,...,12. In 
the figures, E is shown as a function of k.
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Fig. 8. Initial state B, E = 20.

Fig. 12. Solution C-1, E = 5 Fig. 9. Solution B-1, E = 2.

Fig. 10. Solution B-2, E = 2

Fig. 11. Initial state C, E = 20.

Fig. 13. Solution C-2, E = 5.
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CONCLUSIONS

This paper considered the problem of covering a 
maximum number of given points by a fixed number 
of equal disks. An objective function called energy 
was introduced and the problem was converted to a 
continuous optimization problem for minimizing the 
energy. For the solution of the optimization problem a 
simulated annealing algorithm was developed. It was 
demonstrated that the algorithm successfully finds 
global minima of the energy overcoming potential local 
minima. The global minima correspond to configurations 
of disks that cover a maximum number of points, hence 
they are the sought solutions of the original problem.
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