ENHANCING REGENERATION SYSTEM CYCLIC STABILITY FOR ALL-IRON FLOW BATTERIES THROUGH NAFION MEMBRANE MODIFICATION WITH A SILICA NANOLAYER

Authors

  • Yaroslav Kolosovskyi National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • Oleksii Kosohin National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • Olga Linyucheva National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.59957/jctm.v60.i5.2025.13

Keywords:

Nafion membrane, TEOS, all-iron flow battery, electrolyte regeneration, cyclic stability, catalyst degradation, energy storage, silica nanolayer

Abstract

This study investigates the impact of modifying a Nafion N115 membrane with a silica nanolayer created from tetraethoxysilane (TEOS) on the performance and durability of an all-iron flow battery. The research aims to enhance electrolyte regeneration and reduce degradation issues commonly encountered in such systems. Potentiometric analysis and cyclic voltammetry were employed to assess the modified membranes' cyclic stability and electrochemical activity of the catalyst. The results demonstrate that the TEOS-modified membrane significantly improves cyclic stability, extending it to ten cycles, compared to just three cycles for unmodified membranes. Moreover, the modification effectively preserves the electrochemically active surface area of the platinum catalyst, thereby enhancing overall system performance and reducing catalyst degradation. The study concludes that the TEOS-modified Nafion membrane offers a viable solution to improve the durability and efficiency of all-iron flow batteries, making it a promising candidate for long-term energy storage applications.

References

Qi, Y., Ma, S., Jin, F., Zhou, D., & Li, R. (2023). Optimal dispatch of concentrating solar thermal power (CSP)-wind combined power generation system. Journal of Physics: Conference Series, 2636(1), 012045. https://doi.org/10.1088/1742-6596/2636/1/012045

Doetsch, C. and Burfeind, J. (2016). Vanadium redox flow batteries. Storing Energy, 227-246. https://doi.org/10.1016/b978-0-12-803440-8.00012-9

Manohar, A. K., Malkhandi, S., Yang, B., Yang, C., Prakash, G. K. S., & Narayanan, S. R. (2012). A high-performance rechargeable iron electrode for large-scale battery-based energy storage. Journal of the Electrochemical Society, 159(8), A1209-A1214. https://doi.org/10.1149/2.034208jes

Wang, S., Ma, L., Niu, S., Sun, S., Liu, Y., & Cheng, Y. (2024). A double‐ligand chelating strategy to iron complex anolytes with ultrahigh cyclability for aqueous iron flow batteries. Angewandte Chemie International Edition, 63(9). https://doi.org/10.1002/anie.202316593

Watson, V., Effiong, E. E., & Kalu, E. E. (2015). Influence of mixed electrolyte on the performance of iron-ion/hydrogen redox flow battery. ECS Electrochemistry Letters, 4(7), A72-A75. https://doi.org/10.1149/2.0091507eel

Selverston, S., Savinell, R. F., & Wainright, J. S. (2016). In-tank hydrogen-ferric ion recombination. Journal of Power Sources, 324, 674-678. https://doi.org/10.1016/j.jpowsour.2016.05.126

Jayathilake, B. S., Plichta, E. J., Hendrickson, M., & Narayanan, S. R. (2018). Improvements to the coulombic efficiency of the iron electrode for an all-iron redox-flow battery. Journal of the Electrochemical Society, 165(9), A1630-A1638. https://doi.org/10.1149/2.0451809jes

Hawthorne, K. L., Petek, T. J., Miller, M. A., Wainright, J. S., & Savinell, R. F. (2014). An investigation into factors affecting the iron plating reaction for an all-iron flow battery. Journal of the Electrochemical Society, 162(1), A108-A113. https://doi.org/10.1149/2.0591501jes

Mauritz, K. A. and Warren, R. M. (1989). Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 1. infrared spectroscopic studies. Macromolecules, 22(4), 1730-1734. https://doi.org/10.1021/ma00194a038

Sharma, R., Gyergyek, S., & Andersen, S. M. (2022). Critical thinking on baseline corrections for electrochemical surface area (ecsa) determination of pt/c through h-adsorption/h-desorption regions of a cyclic voltammogram. Applied Catalysis B: Environmental, 311, 121351. https://doi.org/10.1016/j.apcatb.2022.121351

Drillkens, J., Schulte, D., & Sauer, D. U. (2010). Long-term stability of Nafion hybrid membranes for use in vanadium redox flow batteries. ECS Transactions, 28(30), 167-177. https://doi.org/10.1149/1.3505470

Ye, G., Hayden, C. A., & Goward, G. R. (2007). Proton dynamics of nafion and nafion/sio2 composites by solid state nmr and pulse field gradient nmr. Macromolecules, 40(5), 1529-1537. https://doi.org/10.1021/ma0621876

Ashraf, M. A., Islam, A., Butt, M. A., Mannan, H. A., Khan, R. U., Kamran, K., … & Al‐Sehemi, A. G. (2021). Quaternized diaminobutane/poly(vinyl alcohol) cross-linked membranes for acid recovery via diffusion dialysis. Membranes, 11(10), 786. https://doi.org/10.3390/membranes11100786

Arruda, T. M., Shyam, B., Ziegelbauer, J. M., Mukerjee, S., & Ramaker, D. E. (2008). Investigation into the competitive and site-specific nature of anion adsorption on pt using in situ x-ray absorption spectroscopy. The Journal of Physical Chemistry C, 112(46), 18087-18097. https://doi.org/10.1021/jp8067359

Goor‐Dar, M., Travitsky, N., & Peled, E. (2012). Study of hydrogen redox reactions on platinum nanoparticles in concentrated hbr solutions. Journal of Power Sources, 197, 111-115. https://doi.org/10.1016/j.jpowsour.2011.09.044

Devivaraprasad, R., Kar, T., Leuaa, P., & Neergat, M. (2017). Recovery of active surface sites of shape-controlled platinum nanoparticles contaminated with halide ions and its effect on surface-structure. Journal of the Electrochemical Society, 164(9), H551-H560. https://doi.org/10.1149/2.0171709jes

Downloads

Published

2025-09-03

Issue

Section

Articles