EFFECT OF SILICA NANOPARTICLES ON WATER EVAPORATION PROCESS
DOI:
https://doi.org/10.59957/jctm.v60.i4.2025.10Keywords:
nanofluid, evaporation, thermal analyzer, SiO2 nanoparticles.Abstract
This manuscript details an experimental study investigating the surface evaporation characteristics of a nanofluid composed of water and SiO2 nanoparticles with an average diameter of 16 nm. The study evaluated the evaporation rates of nanofluids with varying nanoparticle mass concentrations (0.05 %, 0.1 %, 0.2 %, 0.3 %, 0.4 %, 0.5 %, 1 %, 3%, 5 %) using a STA PT1600 thermal analyser at a temperature of 40°C. Results indicate that SiO2 nanoparticles initially reduce the evaporation rate of water up to a concentration of 0.1 mass %, but this effect reverses, with the evaporation rate increasing at intermediate concentrations (up to 0.5 mass%). At higher nanoparticle concentrations (1 mass % and above), the evaporation rate stabilizes and does not change significantly. These results demonstrate
that the evaporation properties of water can be modulated by adjusting the nanoparticle mass concentration up to 1 %.
References
H.Y. Erbil, Evaporation of pure liquid sessile and spherical suspended drops: A review, Adv. Colloid Interface Sci. 170, 1-2, 2012, 67-86.
A.W. Zaibudeen, J. Philip, Temperature and pH sensor based on functionalized magnetic nanofluid, Sens. Actuator B-Chem. 268, 2018, 338-349.
K. Sefiane, S. K. Wilson, S. David, G. J. Dunn, B. R. Duffy, On the effect of the atmosphere on the evaporation of sessile droplets of water, Phys of fluids. 21.6, 2009.
S. Meng, X. Meng, W. Fan, D. Liang, L. Wang, W. Zhang, Y. Liu, The role of transparent exopoymer particles (TEP) in membrane fouling: A critical review, Wat. Res. 181, 2020, 115930.
R. Wang, D. Liang, X. Liu, W. Fan, S. Meng, W. Cai, Effect of magnesium ion on polysaccharide fouling, Chem. Eng. J. 379, 2020, 122351.
A.S. Lobasov, A.V. Minakov, Numerical investigation of the pulsation frequency of the flow rate effect on the mixing efficiency of the active T-shaped micromixer, Jour. Phys: Conf. Ser. 1382, 2019, 1.
R.H. Chen, T.X. Phuoc, D. Martello, Effects of nanoparticles on nanofluid droplet evaporation, Int. J. Heat Mass Transf. 53(19-20), 2010, 3677-3682.
X. Yao, H. Zhang, C. Lemckert, A. Brook, P. Schouten, Evaporation reduction by suspended and floating covers: overview, modelling and efficiency. Urban water security research alliance technical report. 28, 2010, 1-13.
M. Moghiman, B. Aslani, Influence of nanoparticles on reducing and enhancing evaporation mass transfer and its efficiency, Int. Jour. Heat Mass Transf. 61, 2013, 114-118.
H. Ali, C.A. Madramootoo, S. Abdel Gwad, Evaporation model of Lake Qaroun as influenced by lake salinity, J. Irrig. Drain. 50(1), 2001, 9-17.
M. Örvös, V. Szabó, T. Poós, Rate of evaporation from the free surface of a heated liquid, J. Appl. Mech. Tech. Phys. 57, 2016, 1108-1117.
N. Kumar, J.H. Arakeri, A fast method to measure the evaporation rate. J. Hydrol. 594, 2021, 125642.
R.H. Chen, T.X. Phuoc, D. Martello, Effects of nanoparticles on nanofluid droplet evaporation, Int. J. Heat Mass Transf. 53(19-20), 2010, 3677-3682.
M.R. Madhusoodanan, V. Sajith, C.B. Sobhan, Experimental investigation of phase change phenomena in nanofluids, In Heat Transfer Summer Conference. 42746, 2007, 859-863.
K. Sefiane, R. Bennacer, Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates, Adv. Colloid Interface Sci. 147, 2009, 263-271.
L. Fitriana, R.A.A. Nugroho, H. Saputro, T. Firdani, R. Muslim, B.W. Gumelar, V. L. P. Sutrisno, The basic investigation of evaporation rate and burning temperature of various type of liquid fuels droplet, In IOP Conference Series: Materials Science and Engineering, 434, 1, 2018, 012182.
J. Wen, Y. Hu, A. Nakanishi, R. Kurose, Atomization and evaporation process of liquid fuel jets in crossflows: A numerical study using Eulerian/Lagrangian method, Int. J. of Multiph. Flow. 129, 2020, 103331.
D. Téré, T.G. Christian, H. Kayaba, B. Boubou, S. Sayouba, D. Tizane, B. Antoine, Evaporation and combustion of a drop of liquid fuel—A review, Renew. Energy. 13(2), 2022, 28-54.
Zh.S. Akhatov, S.Z. Mirzaev, Wu. Zhiyong, S.S. Telyaev, E.T. Zhuraev, T.I. Zhuraev, Research on Thermophysical Properties of Nanoliquids Based on SiO2 Nanoparticles for Use as a Heat-Transfer Medium in Solar-Thermal Converters, Appl. Solar Energy. 54, 2018, 50-60.
P.C. Mishra, S. Mukherjee, S.K. Nayak, A. Panda, A brief review on viscosity of nanofluids. Int. Nano. Lett. 4, 2014, 109-120.
T. Zhang, Q. Zou, Z. Cheng, Z. Chen, Y. Liu, Z. Jiang, Effect of particle concentration on the stability of water-based SiO2 nanofluid, Pow. Tech. 379, 2021, 457-465.
S.O. Olayiwola, M. Dejam, Experimental study on the viscosity behavior of silica nanofluids with different ions of electrolytes, Ind. Eng. Chem. Res. 59(8), 2020, 3575-3583.
J. Traciak, G. Żyła, Effect of nanoparticles saturation on the surface tension of nanofluids. Jour of Mol. Liq. 363, 2022, 119937.
J Traciak, G. Żyła, Surface Tension of Ethylene Glycol-Based Nanofluids Containing Three Types of Oxides: Zinc Oxide (ZnO), Magnesium Oxide (MgO) and Indium Oxide (In2O3), Int. J. Thermophys. 44(3), 2023, 34.
A. Kujawska, R. Mulka, S. Hamze, G. Żyła, B. Zajaczkowski, M.H. Buschmann, P. Estellé, The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids, Colloids Surf. A Physicochem. Eng. Asp. 627, 2021, 127082.
J.S.Akhatov, S.Z.Mirzaev, A.S.Halimov, S.S.Telyaev, E.T. Juraev, Study of the possibilities of thermal performance enhancement of flat plate solar water collectors by using of nanofluids as heat transfer fluid, Appl. Solar Energy. 53, 2017, 250-257.
Y. Gan, L. Qiao, Evaporation characteristics of fuel droplets with the addition of nanoparticles under natural and forced convections, Int. J. Heat Mass Transf. 54(23-24), 2011, 4913-4922.
Sh. Sato, Da-Ren. Chen, David.Y.H. Pui, Molecular dynamics study of nanoparticle collision with a surface-implication to nanoparticle filtration, Aerosol Air Qual. Res. 7(3), 2007, 278-303.
V. Rudyak, A. Belkin, S. Krasnolutskii, Handbook of Nanoparticles. 2015,1193-1218
R. Rabani, M.H. Saidi, L. Joly, S. Merabia, A. Rajabpour, Enhanced local viscosity around colloidal nanoparticles probed by equilibrium molecular dynamics simulations, J. Chem. Phys. 155(17), 2021, 174701.
A.D. Nazarov, N.B. Miskiv, E.M. Bochkareva, Evaporation of a suspended nanofluid droplet. J. Phys: Conf. Ser. 1105, 1, 2018, 012095.
J.D. Menczel, R.B. Prime, Thermomechanical analysis (TMA) and thermodilatometry (TD), Thermal analysis of polymers: Fundamentals and applications, 2009, 319-385.
A.N. Payzullaev, B.A. Allaev, S.Z. Mirzaev, J.M. Abdiev, J. Urinov, A. Parkash, The Impact of Silicon Dioxide Nanoparticle Size on the Viscosity and Stability of Nanofluids, ECS Advan, 2, 2023, 031001.
S.Z. Mirzaev, I. Iwanowski, M. Zaitdinov, U. Kaatze, Critical dynamics and kinetics of elementary reactions of 2, 6-dimethylpyridine–water, Chem. Phys. Lett. 431(4-6), 2006, 308-312.
I. Iwanowski, A. Sattarow, R. Behrends, S.Z. Mirzaev, U. Kaatze, Dynamic scaling of the critical binary mixture methanol-hexane, J. Chem. Phys. 124, 2006, 144505.
J.K. Bhattacharjee, S.Z. Mirzaev, U. Kaatze, Does the viscosity exponent derive from ultrasonic attenuation spectra, Int. J. Thermophys. 33, 2012, 469-483.
S.Z. Mirzaev, U. Kaatze, Scaling function of critical binary mixtures: Nitrobenzene–n-hexane data revisited, Chem. Phys. 393(1), 2012, 129-134.
M.E. Brown. (Ed.). Introduction to thermal analysis: techniques and applications. Dordrecht: Springer Netherlands, 2001.
M.R. Rahman, S. Hamdan, J.L.C. Hui, (2001). Introduction to thermal analysis: techniques and applications, MATEC Web. Conf. 87, 2017, 03013.
K. Hisatake, S. Tanaka, Y. Aizawa, Evaporation rate of water in a vessel, J. Appl. Phys. 73, 1993, 7395-7401.
R.Wang, G. Pan, Sh. Qian, L.Li, Z. Zhu, Influence of nanoparticles on the evaporation behavior of nanofluid droplets: A Dh law and underlying mechanism, Langmuir. 36, 2020, 919-930.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Chemical Technology and Metallurgy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.