ULTRASONIC-ASSISTED ELECTRODEPOSITION OF SnNi(C) COMPOSITE COATINGS
DOI:
https://doi.org/10.59957/jctm.v60.i5.2025.14Abstract
ABSTRACT
By changing various parameters: content of graphite particles, ultrasonic stirring and electrolyte temperature data on the growth rate, elemental composition and morphology of electrodeposited Sn-Ni(C) composites on copper were obtained. The coatings deposition was performed at galvanostatic conditions in gluconate-glycinate electrolyte with pH = 4÷4.5. Graphite powder (type Soft) with a concentration of 1÷4 g L-1 was introduced into the electrolyte. Coatings deposited under “quiet” conditions are coarse-crystalline and the graphite particles are unevenly distributed. By increasing the temperature to 60 0C, ultrasonic stirring and graphite content in the solution of 3 g L-1, the coatings become finer-crystalline and smooth. The Ni content increased by about 11 wt.% and това на Sn varies between 44 wt.% to 71wt% in these conditions. When applying ultrasonic stirring and when the graphite content in the solution increases from 0 to 4 g L-1, the average growth rate of the coating varies around higher limits (from 108 mg cm-2 h-1 to 74 mg cm-2 h-1 ) compared to " the "quiet" conditions (from 95 mg h-1 to 44 mg cm-2 h-1).
Key words: electrodeposition, graphite particles (C), composite coating, SnNi(C), ultrasonic stirring
References
REFERENCES
K.Y. Sasaki, B. Talbot, Electrodeposition of iron-Group metals and binary alloys from sulfate baths, J. Elecrochem.Soc., 145, 3, 1998, 981-990.
C. Ma, S.C. Wang, L.P. Wang, F.C. Walsh, R.J.K. Wood, The electrodeposition and characterisation of low-friction and wear-resistant Co-Ni-P coatings, Surf. Coating. Technol., 235, 2013, 495-505.
C. Ma, S.C. Wang, F.C. Walsh, The electrodeposition of nanocrystalline Cobalt-Nickel-Phosphorus alloy coatings: review, Trans. IME, Int. J. Surf. Eng. Coat., 93, 5, 2015, 275-282.
T.V. Vineesh, S. Mubarak, M.G. Hahm, V. Prabu, S. Alwarapp, T.N. Narayanan, Controllably alloyed, low density, free-standing Ni-Co and Ni-Graphene sponges for electrocatalytic water splitting, Scientific Repotrts, 2016, 31202, doi: 101038/srep312026.
L. Peter, J. Padar, E. T.-Kadar, A. Cziraki, P. Soki, L. Pogany, I. Bakonyi, Electrodeposition of CoNiCu/Cu multilayers 1. Composition, structure and magnetotransport properties, Electrochim. Acta, 52, 2007, 3813-3821.
S. Armyanov, M. Maksimov,Structure, Internal stress and magnetic properties of electrodeposited Co-Ni alloys, IEEE Trans. Magn., 14, 5, 1978, 855-857.
G. Nabiyouni, W. Schwarzacher, Z. Rolik, I. Bakonyi, GMR and Magnetic Properties of elec-trodeposited CoNiCu/Cu multilayers, J. Magn. Mater, 253, 2002, 77-85.
D. Kim, D.-Y.Park, B.Y. Yoo, P.T. A.Sumodjo, N.V. Myung, Magnetic properties of nanocrystalline iron group thin film alloys electrodeposited from sulfate and chloride baths, Electrochim. Acta, 48, 2003, 819-830.
L. Baosong, M. Tianyong, Ch. Hongqiang, J. Wang, D.Shengsong, M. Yicheng, W. Zhang, Ultrasonic-assisted electrodeposition of Ni/diamond composite coatings and its structure and electrochemical properties, Ultrason. Sonochem., 73, 5, 2021, 105475.
M. Torabi, A. Dolati, A kinetic study on the electrodeposition of nickel nanostructure and its electrocatalytic activity for hydrogen evolution reaction, J. Appl.Electrochem., 40, 2010, 1941-1947.
I. Paseka, Hydrogen evolution reaction on amorphous Ni-P and Ni-S electrodes and the internal stress in a layer of these electrodes, Electrochim. Acta, 47, 6, 2001, 921-931.
R.K. Shervedani, A. Lasia, Studies of the hydrogen evolution reaction on Ni-P electrodes., J. Electrochem. Soc. 144, 2, 1997, 511–519.
J.J. Podesta, R.C.V. Piatti, A.J. Arvia, The influence of iridium, ruthenium and palladium on the electrochemical behaviour of Co-P and Ni-Co-P base amorphous alloys for water electrolysis in KOH aqueous solutions, Int. J. Hydrogen Energy, 20, 2, 1995, 111-122.
V.D. Jovic, U.C. Lacnjevac, B.M. Jovic, N.V. Krstalc, Electrodeposited, Ni-based, non-noble metal coatings as cathodes for hydrogen evolution in chlor-alkali electrolysis, Review paper, Zastita. Materijala, 55, 2, 2014, 111-125.
H. Zhang, T. Shi, P.V. Braun, 3D Scaffolded Nickel-Tin Li-Ion Anodes with Enhanced Cyclability, Adv. Mater., 28, 4, 2016, 742-749.
M. Uysal, H. Gormus, R. Karslioglu, A. Alp, H. Akbulut, Electrochemical performance of pulse electrodeposited Sn-Ni/MWCNT composite anode for Li-ion batteries, Proccedings of the 3rd international congress APMAS 2013, april 24-28, Acta Phys. Pol. A, 125, 2, 2014, 353-356.
K. Nishikawa, K. Dokko, K. Kinishita, S.W. Woo, K. Kanamura, Three-dimensionally ordered macroporous Ni–Sn anode for lithium batteries, J. Power Sources, 189, 2009, 726-729.
M. Lu, Y. Tian, Y. Li, B. Huang, Synthesis and Characterization of Spherical-Like Tin-Nickel Alloy as Anode for Lithium Ion Batteries, Int. J. Electrochem. Sci., 7, 1, 2012, 760-767.
X. L. Wang, W.Q. Han, J. Chen, J. Graetz, Single-Crystal Intermetallic M−Sn (M = Fe, Cu, Co, Ni) Nanospheres as Negative Electrodes for Lithium-Ion Batteries, ACS Appl. Mater. Interf., 2, 5, 2010, 1548-1551.
H. Ying, W.Q. Han, Metallic Sn‐Based Anode Materials: Application in High‐Performance Lithium‐Ion and Sodium‐Ion Batteries, Adv.Sci. (Weinh), 4, 11, 2017, 1-35.
Y. Yui, Y. Ono, M. Hayashi, Y. Nemoto, K. Hayashi, K. Asakura, and H. Kitabayashi, Sodium-Ion Insertion/Extraction Properties of Sn-Co Anodes and Na Pre-Doped Sn-Co Anodes, J. Electrochem. Soc., 162, 2, 2015, A3098-A3102.
V. Milanova, I. Markova, M. Piskin, T. Stankulov, T. Petrov, I. Denev, Synthesis and study of carbon-based nanocomposites with Co-Sn nanoparticles for electrode materials, J. Chem. Techn. Met., 50, 3, 2015, 288-298.
I. Tudela, Y. Zhang, M. Pal, I. Kerr, A.J. Cobley, Ultrasound-assisted electrodeposition of composite coatings with particles, Surf. Coat. Techn., 259, C, 2014, 363-373.
A. Mallik, B.C. Ray, Evolution of principle and practice of electrodeposited thin film: a review on effect of temperature and sonication, Res. Int. J. Electrochem., 2011, Article ID 568023, 1-16.
B.G. Pollet, Editor, Power ultrasound in electrochemistry: From versatile laboratory tool to engineering solution, John Wiley & Sons: Hoboken, NJ, USA, 2012.
B.G. Pollet, A novel method for preparing PEMFC electrodes by the ultrasonic and sonoelectrochemical techniques., Electrochem. Comm., 11, 2009, 1445-1448.
J.M. Costa, A.F.de Al.Neto, Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials: A review, Ultras. Sonochem., 68, 2020, 105193.
K. Kobayasi, A. Chiba, N. Minami, Effects of ultrasound on both electrolytic and electroless nickel depositions, Ultrasonics, 38, 2000, 676-681.
S. Tan, H. Algül, E. Kiliçaslan, Ah. Alp, H. Akbulut, M. Uysal, The effect of ultrasonic power on high temperature wear and corrosion resistance for Ni based alloy composite coatings, Colloids and Surf. A: Physicochem. and Eng. Aspects, Part A, 656, 1, 2023, 130345.
E. García-Lecina, I. García-Urrutia, J.A. Díez, J. Morgiel, P. Indyka, A comparative study of the effect of mechanical and ultrasound agitation on the properties of electrodeposited Ni/Al2O3 nanocomposite coatings, Surf. Coat. Technol. 206. 2012, 2998-3005.
G. Gyawali, S.H.Cho, D.J.Woo, S.W.Lee, Pulse electrodeposition and characterisation of Ni-SiC composite coatings in presence of ultrasound, Transactions, 90, 5, 2012, 274-281.
J. W. Cuthbertson, N. Parkinson, H.P. Rooksby, Electrodeposition of Tin‐Nickel Alloy Plate from Chloride‐Fluoride Electrolytes, J. Electrochem. Soc., 100, 3, 1953, 107-119.
P. R. Narayanan, S.V.S. Narayana Murty, Electrodeposition of Sn-Ni Alloy Coatings and their characterization, Adv. Mater. Manuf. Proc., 9, 2015, 655-658.
K. Ignatova, L. Vladimirova, Electrodeposition and morphology of SnNi powders in gluconate and fluoride-gluconate electrolyte in the presence of Glycin, Oxidation Communications, 45, 3, 2022, 538-545.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Chemical Technology and Metallurgy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.