A WAY TO IMMOBILIZATION OF ANTIMICROBIAL PEPTIDENISIN ON POLYDIMETHYLSILOXANE SURFACE

Authors

  • Todorka Vladkova University of Chemical Technology and Metallurgy
  • Peter Dineff
  • Dilyana Gospodinova

DOI:

https://doi.org/10.59957/jctm.v60.i4.2025.1

Keywords:

Keywords: PDMS, surface activation, plasma based Ar beam (PBAIB), antimicrobial peptides, nisin, immobilization, linker-free, via vinyl monomer, via flexible spacer

Abstract

Medical devices associated infections due to microbial attachment and biofilm formation are with a high impact on human health and huge socioeconomic costs. Increasing resistance to traditional antibiotics and multidrug treatments are already recognized as one of the top-most serious threats to human health. This rises an argent need in the development of new antimicrobial agents, materials and strategies for improved protection of medical devices against infections. Immobilization of antimicrobial peptides onto the material surface is one of them. Many medical devices are fabricated by chemically inert polymers, like polydimethylsiloxane (PDMS), polystyrene, polyethylene, etc. to which surfaces is difficult the chemical bonding of biomolecules.

The aim of this investigation is to demonstrate the ability of plasma based Ar+ beam (PBAIB) to initiate antimicrobial peptides immobilization onto the chemically inert PDMS surface, using the bacteriocin nisin as an example. Earlier developed by us multi-step procedure was utilized that makes possible three types bonding of antimicrobial peptides: i) linker – free, at the first step, just after the PBAIB treatment; ii) via vinyl monomer linker, at the second step after grafting of vinyl monomer and; iii) via flexible spacer after coupling of di-NH2PEG on vinyl monomer grafted surface. A parallel plate reactor, equipped with a serial capacitance, was employed to ensure arise of an ion flow inside the plasma volume, directed toward the treated sample. The changes in the chemical composition of the PDMS surface were studied at every step of the modification procedure and the successful immobilisation of nisin via flexible spacer (di-NH2-PEG5000) was proved by XPS analysis.

This multi-step procedure to biofunctionalization of strong hydrophobic chemically inert polymer surfaces has a potential to be used whenever need arises to control antimicrobial activity of PDMS or other chemically inert polymeric materials and medical devices fabricated by them.

References

El proyecto europeo Nomorfilm cierra un primer ciclo, ISGLOBAL https://www.isglobal.org/-/el-proyecto-europeo-nomorfilm-cierra-un-primer-ciclo, accessed December 3, 2024.

M. Ramstedt, I.A.C. Ribeiro, H. Bujdakova, F.J.M. Mergulhão, L. Jordao, P. Thomsen, M. Alm, M. Burmølle, T. Vladkova, F. Can, M. Reches, M. Riool, A. Barros, R.L. Reis, E. Meaurio, J. Kikhney, A. Moter, S.A.J. Zaat, J. Sjollema, Evaluating Efficacy of Antimicrobial and Antifouling Materials for Urinary Tract Medical Devices: Challenges and Recommendations, Macromol. Biosci., 19, 2019, 1800384.

R. Mishra, A.K. Panda, S. De Mandal, M. Shakeel, S.S. Bisht, J. Khan, Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens, Front. Microbiol. 11, 2020.

L. Ye, J. Zhang, W. Xiao, S. Liu, Efficacy and mechanism of actions of natural antimicrobial drugs, Pharmacol. Ther., 216, 2020, 107671.

C.J.L. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G.R. Aguilar, A. Gray, C. Han, C. Bisignano, P. Rao, E. Wool, S.C. Johnson, A.J. Browne, M.G. Chipeta, F. Fell, S. Hackett, G. Haines-Woodhouse, B.H.K. Hamadani, E.A.P. Kumaran, B. McManigal, S. Achalapong, R. Agarwal, S. Akech, S. Albertson, J. Amuasi, J. Andrews, A. Aravkin, E. Ashley, F.-X. Babin, F. Bailey, S. Baker, B. Basnyat, A. Bekker, R. Bender, J.A. Berkley, A. Bethou, J. Bielicki, S. Boonkasidecha, J. Bukosia, C. Carvalheiro, C. Castañeda-Orjuela, V. Chansamouth, S. Chaurasia, S. Chiurchiù, F. Chowdhury, R.C. Donatien, A.J. Cook, B. Cooper, T.R. Cressey, E. Criollo-Mora, M. Cunningham, S. Darboe, N.P.J. Day, M.D. Luca, K. Dokova, A. Dramowski, S.J. Dunachie, T.D. Bich, T. Eckmanns, D. Eibach, A. Emami, N. Feasey, N. Fisher-Pearson, K. Forrest, C. Garcia, D. Garrett, P. Gastmeier, A.Z. Giref, R.C. Greer, V. Gupta, S. Haller, A. Haselbeck, S.I. Hay, M. Holm, S. Hopkins, Y. Hsia, K.C. Iregbu, J. Jacobs, D. Jarovsky, F. Javanmardi, A.W.J. Jenney, M. Khorana, S. Khusuwan, N. Kissoon, E. Kobeissi, T. Kostyanev, F. Krapp, R. Krumkamp, A. Kumar, H.H. Kyu, C. Lim, K. Lim, D. Limmathurotsakul, M.J. Loftus, M. Lunn, J. Ma, A. Manoharan, F. Marks, J. May, M. Mayxay, N. Mturi, T. Munera-Huertas, P. Musicha, L.A. Musila, M.M. Mussi-Pinhata, R.N. Naidu, T. Nakamura, R. Nanavati, S. Nangia, P. Newton, C. Ngoun, A. Novotney, D. Nwakanma, C.W. Obiero, T.J. Ochoa, A. Olivas-Martinez, P. Olliaro, E. Ooko, E. Ortiz-Brizuela, P. Ounchanum, G.D. Pak, J.L. Paredes, A.Y. Peleg, C. Perrone, T. Phe, K. Phommasone, N. Plakkal, A. Ponce-de-Leon, M. Raad, T. Ramdin, S. Rattanavong, A. Riddell, T. Roberts, J.V. Robotham, A. Roca, V.D. Rosenthal, K.E. Rudd, N. Russell, H.S. Sader, W. Saengchan, J. Schnall, J.A.G. Scott, S. Seekaew, M. Sharland, M. Shivamallappa, J. Sifuentes-Osornio, A.J. Simpson, N. Steenkeste, A.J. Stewardson, T. Stoeva, N. Tasak, A. Thaiprakong, G. Thwaites, C. Tigoi, C. Turner, P. Turner, H.R. van Doorn, S. Velaphi, A. Vongpradith, M. Vongsouvath, H. Vu, T. Walsh, J.L. Walson, S. Waner, T. Wangrangsimakul, P. Wannapinij, T. Wozniak, T.E.M.W.Y. Sharma, K.C. Yu, P. Zheng, B. Sartorius, A.D. Lopez, A. Stergachis, C. Moore, C. Dolecek, M. Naghavi, Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, The Lancet, 399, 2022, 629-655.

T.G. Vladkova, Y. Smani, B.L. Martinov, D.N. Gospodinova, Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications, Molecules 29, 2024, 4889.

EFSA Panel on Food Additives and Flavourings, FAF, M. Younes, G. Aquilina, L. Castle, G. Degen, K.-H. Engel, P.J. Fowler, M.J. Frutos Fernandez, P. Fürst, R. Gürtler, T. Husøy, M. Manco, W. Mennes, P. Moldeus, S. Passamonti, R. Shah, I. Waalkens-Berendsen, M. Wright, K. Cheyns, B. Dusemund, M. Mirat, A. Mortensen, D. Turck, D. Wölfle, S. Barmaz, A. Mech, A.M. Rincon, A. Tard, G. Vianello, P. Zakidou, U. Gundert-Remy, Re-evaluation of sucrose esters of fatty acids, E 473, as a food additive in foods for infants below 16 weeks of age and follow-up of its previous evaluations as food additive for uses in foods for all population groups, EFSA Journal 21, 2023, e07961.

A.D. Staneva, D.K. Dimitrov, D.N. Gospodinova, T.G. Vladkova, Antibiofouling Activity of Graphene Materials and Graphene-Based Antimicrobial Coatings, Microorganisms 9, 2021, 1839.

T. Nezakati, B.G. Cousins, A.M. Seifalian, Toxicology of chemically modified graphene-based materials for medical application, Arch Toxicol 88, 2014, 1987-2012.

T.G. Vladkova, B.L. Martinov, D.N. Gospodinova, Anti-biofilm agents from marine biota, J. Chem. Technol. Metall., 58, 2023, 825-839.

M. Hoque, C. McDonagh, B.K. Tiwari, J.P. Kerry, S. Pathania, Effect of Cold Plasma Treatment on the Packaging Properties of Biopolymer-Based Films: A Review, Applied Sciences 12, 2022, 1346.

N. Gomathi, A. Sureshkumar, S. Neogi, RF plasma-treated polymers for biomedical applications, Curr. Sci., 94, 2008, 1478-1486.

L.J. Waters, C.V. Finch, A.K.M.M.H. Bhuiyan, K. Hemming, J.C. Mitchell, Effect of plasma surface treatment of poly(dimethylsiloxane), on the permeation of pharmaceutical compounds, J. Pharm. Anal., 7, 2017, 338-342.

P.K. Chu, J.Y. Chen, L.P. Wang, N. Huang, Plasma-surface modification of biomaterials, Mater. Sci. Eng., R: Reports, 36, 2002, 143-206.

T.G. Vladkova, P. Dineff, R. Stojcheva, B. Tomerova, Ion-plasma modification of polyvinylchloride microfiltration membranes, J. Appl. Polym. Sci., 90, 2003, 2433-2440.

A. Simeonova, T. Godjevargova, D. Vladkova, Copper Sorption from Aqueous Solutions by Plasma Modified Polyacrylonitrile Beads, Polym. Bull. 57, 2006, 765-773.

C. Satriano, E. Conte, G. Marletta, Surface Chemical Structure and Cell Adhesion onto Ion Beam Modified Polysiloxane, Langmuir 17, 2001, 2243-2250.

M. Cutroneo, L. Torrisi, L. Silipigni, A. Michalcova, V. Havranek, A. Mackova, P. Malinsky, V. Lavrentiev, P. Noga, J. Dobrovodsky, P. Slepicka, D. Fajstavr, L. Andò, V. Holy, Compositional and Structural Modifications by Ion Beam in Graphene Oxide for Radiation Detection Studies, Int. J. Mol. Sci., 23, 2022, 12563.

T.G. Vladkova, I.L. Keranov, P.D. Dineff, S.Y. Youroukov, I.A. Avramova, N. Krasteva, G.P. Altankov, Plasma based Ar+ beam assisted poly(dimethylsiloxane), surface modification, Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interactions with Materials and Atoms 236, 2005, 552-562.

I. Keranov, T. Vladkova, M. Minchev, A. Kostadinova, G. Altankov, Preparation, characterization, and cellular interactions of collagen-immobilized PDMS surfaces, J. Appl. Polym. Sci., 110, 2008, 321-330.

I. Keranov, T.G. Vladkova, M. Minchev, A. Kostadinova, G. Altankov, P. Dineff, Topography characterization and initial cellular interaction of plasma-based Ar+ beam-treated PDMS surfaces, J. Appl. Polym. Sci., 111, 2009, 2637-2646.

A. Gharsallaoui, N. Oulahal, C. Joly, P. Degraeve, Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses, Crit. Rev. Food Sci. Nutr., 56, 8, 2016, 1262-1274.

Z.J. Zhang, C. Wu, R. Moreira, D. Dorantes, T. Pappas, A. Sundararajan, H. Lin, E.G. Pamer, W.A. van der Donk, Activity of Gut-Derived Nisin-like Lantibiotics against Human Gut Pathogens and Commensals, ACS Chem. Biol. 19, 2024, 357-369.

J. Aveyard, J.W. Bradley, K. McKay, F. McBride, D. Donaghy, R. Raval, R.A. D’Sa, Linker-free covalent immobilization of nisin using atmospheric pressure plasma induced grafting, J. Mater. Chem. B 5, 2017, 2500-2510.

M. Hrabalikova, P. Holcapkova, P. Suly, V. Sedlarik, Immobilization of bacteriocin nisin into a poly(vinyl alcohol), polymer matrix cross-linked with nontoxic dicarboxylic acid, J. Appl. Polym. Sci., 133, 28, 2016.

X. Wang, F. Liu, Y. Zhang, D. Zhu, P.E.J. Saris, H. Xu, M. Qiao, Effective adsorption of nisin on the surface of polystyrene using hydrophobin HGFI, Int. J. Biol. Macromol., 173, 2021, 399-408.

M. Kaganovich, K. Shlosman, E. Goldman, M. Benchis, T. Eitan, R. Shemesh, A. Gamliel, M. Reches, Microbe Killer Polymeric Films Made by Melt-Compounding and Compression of Peptide Assemblies and Polyethylene, Research Square, 2022.

E.E. Popa, A.C. Miteluț, M. Râpă, P.A. Popescu, M.C. Drăghici, M. Geicu-Cristea, M.E. Popa, Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview, Foods 11, 2022, 3820.

J.C.P. Santos, R.C.S. Sousa, C.G. Otoni, A.R.F. Moraes, V.G.L. Souza, E.A.A. Medeiros, P.J.P. Espitia, A.C.S. Pires, J.S.R. Coimbra, N.F.F. Soares, Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging, Innov. Food Sci. Emerg. Technol., 48, 2018, 179–194.

Ch. Baquey, F. Palumbo, M.C. Porte-Durrieu, G. Legeay, A. Tressaud, R. d’Agostino, Plasma treatment of expanded PTFE offers a way to a biofunctionalization of its surface, Nucl. Instrum. Methods Phys. Res., B: Beam Interactions with Materials and Atoms, 151, 1999, 255–262.

J.H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectros. Relat. Phenomena, 8, 1976, 129–137.

C.-M. Chan, Polymer Surface Modification and Characterization, Hanser Pub Inc, Munich, 1993.

A. Bhattacharya, J. Rawlins, P. Ray, eds., Polymer Grafting and Crosslinking, Wiley, 2008. https://www.wiley.com/en-us/Polymer+Grafting+and+Crosslinking-p-9780470414804, accessed December 3, 2024.

V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, A. Wokaun, Photochemical modification of cross-linked poly(dimethylsiloxane), by Irradiation at 172 nm, Macromolecules 37, 2004, 5936-5943.

S.-D. Lee, G.-H. Hsiue, P.C.-T. Chang, C.-Y. Kao, Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials, Biomaterials, 17, 1996, 1599-1608.

P. Chuen-Thuen Chang, S.-D. Lee, G.-H. Hsiue, Heterobifunctional membranes by plasma induced graft polymerization as an artificial organ for penetration keratoprosthesis, J. Biomed. Mater. Res., 39, 1998, 380-389.

R. Latkany, A. Tsuk, M.-S. Sheu, I.-H. Loh, V. Trinkaus–Randall, Plasma surface modification of artificial corneas for optimal epithelialization, J. Biomed. Mater. Res., 36, 1997, 29–37.

U. Gelius, P.F. Hedén, J. Hedman, B.J. Lindberg, R. Manne, R. Nordberg, C. Nordling, K. Siegbahn, Molecular spectroscopy by means of ESCA III. Carbon compounds, Phys. Scr. 2, 1970, 70.

S.S. Wong, Chemistry of Protein Conjugation and Cross Linking, 1st edition, CRC Press, Boca Raton, 1993.

P. Holcapkova, A. Hurajova, P. Kucharczyk, P. Bazant, T. Plachy, N. Miskolczi, V. Sedlarik, Effect of polyethylene glycol plasticizer on long-term antibacterial activity and the release profile of bacteriocin nisin from polylactide blends, Polym. Adv. Technol., 29, 2018, 2253-2263.

Nisin, Wikipedia, 2024 https://en.wikipedia.org/w/index.php?title=Nisin&oldid=1259822089

Accessed December 3, 2024.

W. Liu, J.N. Hansen, Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis, Appl. Environ. Microbiol., 56, 1990, 2551-2558.

Downloads

Published

2025-07-11

Issue

Section

Articles