COMPARATIVE PERFORMANCE OF PEM ELECTROLYZER: STATIONARY VS DYNAMIC MODE

Authors

  • Jordan Iliev Institute of Electrochemistry and Energy Systems "Academician Evgeni Budevski"
  • Dimitar Boychev Institute of Electrochemistry and Energy Systems “Academician Evgeni Budevski”, Bulgarian Academy of Sciences
  • Galin Borisov Institute of Electrochemistry and Energy Systems “Academician Evgeni Budevski”, Bulgarian Academy of Sciences
  • Vladimir Dimitrov Technical University of Sofia
  • Evelina Slavcheva Institute of Electrochemistry and Energy Systems “Academician Evgeni Budevski”, Bulgarian Academy of Sciences

DOI:

https://doi.org/10.59957/jctm.v60.i5.2025.12

Keywords:

constant power profile, dynamic power profile, management system, PEM electrolysis cell, pulse electrolysis

Abstract

This study investigates the performance of a commercial PEM (proton exchange membrane) electrolysis cell, with a working area of 16 cm2 and catalyst loading of 2 mg /cm-2 of IrRuOx on the anode, and 0.5 mg /cm-2 of 60% PtC and 0.25 mg /cm-2 of PtB on the cathode side, under constant and dynamic conditions to identify optimal operating modes for practical use. For this purpose, a custom programmable proportional-integrated (PI) direct current (DC) regulator and a pulse-width-modulation (PWM) frequency generator were developed to provide stationary and dynamic modes, functioning as a single system with integrated data logging for cell voltage, temperature, and pressure sensors via a C# program. Experiments confirmed that square wave pulse loading at 1 Hz with 50% duty cycle provides increased efficiency by reducing the cell voltage compared to a continuous DC operation.

References

1-Cell Rebuildable PEM Electrolyzer Kit

S. Toghyani, S. Fakhradini, E. Biniasadi, M. Y. Abdollahzadeh, M. Safdari Shadloo, Optimization of operating parameters of a polymer exchange membrane electrolyzer, International Journal of Hydrogen Energy, 44, 13, 2019, 6403-6414.

Luis M. Gandia, Gurutze Arzamendi, Pedro M. Dieguez, Renewable hydrogen technologies, Amsterdam, 2013.

J. Koponen, A. Kosonen, V. Ruuskanen, K. Huoman, M. Niemela, J. Ahola, Control and energy efficiency of PEM water electrolyzers in renewable energy systems, International Journal of Hydrogen Energy, 42, 50, 2017, 29648-29660.

M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, International Journal of Hydrogen Energy,38,12, 2013, 4901-4934.

R. E. Clarke, S. Giddey, F. T. Ciacchi, S. P. S. Badwal, B. Paul, J. Andrews, Direct coupling of an electrolyser to a solar PV system for generating hydrogen, International Journal of Hydrogen Energy, 34, 12, 2009, 2531-2542.

R. E. Clarke, S. Giddey, S. P. S. Badwal, Stand-alone PEM water electrolysis system for fail safe operation with a renewable energy source, International Journal of Hydrogen Energy, 35, 3, 2010, 928-935.

H. Sayed-Ahmed, A. I. Toldy, A. Santasalo-Aarnio, Dynamic operation of proton exchange membrane electrolyzers degradation – critical review, Renewable and sustainable energy reviews, 189, 2024, 113883.

A. Z. Tomic, I. Pivac, F. Barbir, A rfeview of testing procedures for proton exchange membrane electrolyzer degradation, Jornal of power sources, 557, 2023, 232569.

C. Rakousky, U. Reimer, K. Wippermann, S. Kuhri, M. Carmo, W. Lueke, D. Stolten, Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power, Journal of power sources, 342, 2017, 38-47.

Microchip Technology, “PIC16f1829,” https://www.microchip.com/en-us/product/pic16f1829.

J. Dang, F. Yang, Y. Li, X. Deng, M. Ouyang, Transient behaviors and mathematical model of proton exchange membrane electrolyzer, Journal of power sources, 542, 2022, 231757.

N. C. Ereli, M. Kisti, T. Esiyok, E. Ozdogan, B. Huner, N. Demir, M. F. Kaya, First pulsed control system design for enhanced hydrogen production performance in proton exchange membrane water electrolyzers, Fuel, 371, 2024, 132027.

H. P. C. Buitendach, R. Gouws, C. A. Martinson, C. Minnaar, D. Bessarabov, Effect of ripple current on the efficiency of a PEM electrolyser, Results in engineering, 10, 2021, 100216.

Z. Dobo, A. B. Palotas, Impact of the current fluctuation on the efficiency of Alkaline Water Electrolysis, International Journal of Hydrogen Energy,42,9, 2017, 5649-5656.

FuelCell Store, “1-Cell Rebuildable PEM Electrolyzer Kit”, https://www.fuelcellstore.com/1-cell-rebuildable-pem-electrolyzer-kit-htec-e208.

Microchip Technology, “PIC18f46k20,” https://www.microchip.com/en-us/product/pic18f46k20.

PalmSens4, “Potentiostat Fundamentals,” https://www.gamry.com/application-notes/instrumentation/potentiostat-fundamentals/.

K. W. Ahmed, M. J. Jang, M. G. Park, Z. Chen, M. Fowler, Effect of Components and Operating Conditions on the Performance of PEM Electrolyzers: A Review, Electrochem, 3, 4, 2022, 581-612.

C. Rakousky, U. Reimer, K. Wippermann, M. Carmo, W. Lueke, D. Stolten, An analysis of degradation phenomena in polymer electrolyte membrane, Journal of power sources, 326, 2016, 120-128.

S. H. Frensch, F. Fouda-Onana, G. Serre, D. Thoby, S. S. Araya, S. K. Kaer, Influence of the operation mode on PEM water electrolysis degradation, International Journal of Hydrogen Energy, 44, 57, 2019, 29889-29898.

F. Mustapha, D. Guilbert, M. El-Ganaoui, Investigation of Electrical and Thermal Performance of a Commercial PEM Electrolyzer under Dynamic Solicitations, Clean Technologies, 4, 4, 2022, 931-941.

I. Vincent, B. Choi, M. Nakoji, M. Ishizuka, K. Tsutsumi, A. Tsutsumi, Pulsed current water splitting electrochemical cycle for hydrogen production, International Journal of Hydrogen Energy, 43, 22, 2018, 10240-10248.

X. Su, L. Xu, B. Hu, Simulation of proton exchange membrane electrolyzer: Influence of bubble covering, International Journal of Hydrogen Energy, 47, 46, 2022, 20027-20039.

Downloads

Published

2025-09-03

Issue

Section

Articles