SYNTHESIS AND PHOTOSTABILITY OF SOME NEW 1,8-NAPHTHALIMIDE DERIVATIVES AS COLOUR MONOMERS FOR FLUORESCENT POLYMERS
DOI:
https://doi.org/10.59957/jctm.v60.i5.2025.2Keywords:
1,8-naphthalimide dyes, fluorescent polymers, photostabilityAbstract
Two new polymerizable 1,8-naphthalimide fluorophores containing residue of an amino acid in the fourth position of the naphthalimide ring have been synthesized. Their copolymers with methyl methacrylate were obtained. The colour coordinates of the prepared polymer have been determined. The photostability of the dyes and copolymers in dimethylformamide have been investigated and an increase in the photostability of dyes included in polymer with about 25-30 % was observed. The photostability of the polymer films obtained with copolymers and polymethyl methacrylate dyed “in mass” with the synthesized dyes have been determined by a change of colour coordinates and reflectance during the radiation with UV light. As a result of this investigation, it can be concluded that the dyes have good photostability and can be applied both as fluorescent dyes for dyeing of polymer materials “in mass” and as colour fluorescent monomers for obtaining of fluorescent polymers.
References
G. Ahumada, M. Borkowska, Fluorescent polymers conspectus. Review. Polymers, 14, 6, 2022, 1118. https://doi.org/10.3390/polym14061118
S. Cichosz, A. Masek, M. Zaborski, Polymer-based sensors: a review, Polym. Test. 67, 2018, 342-348. https://doi.org/10.1016/j.polymertesting.2018.03.024
A. Alvarez, A. Salinas-Castillo, J. Costa-Fernandez, R. Pereiro, A. Sanz-Medel, Fluorescent conjugated polymers for chemical and biochemical sensing, Trends Anal. Chem., 30, 9, 2011, 1513-1525. https://doi.org/10.1016/j.trac.2011.04.017
S. W. Thomas, G. D. Joly, T. M. Swager, Chemical sensors based in amplifying fluorescent conjugated polymers, Chem. Rev., 107, 2007, 1339-1386. https://doi.org/10.1021/cr0501339
E. C. Buruiana, T. Buruiana, M. Olaru, M. Zamfir, V. Pohoata, Fluorescent polymers for sensor applications, Scientific Study and Research, 7, 1, 2006, 141-150. ISSN 1582-540X
A. Oshchepkov, M. Oshchepkov, M. Oshchepkova, A. Al-Hamry, O. Kanoun, E. Kataev, Naphthalimide-based fluorescent polymers for molecular detection. Review, Adv. Optical Mater., 9, 2021, 2001913. https://doi.org/10.1002/adom.20200191
Z. Xu, P. Deng, S. Tang, J. Li, Fluorescent molecularly imprinted polymers based on 1.8-naphthalimide derivatives for efficiently recognition of cholic acid, Mater. Sci. Eng. C., 58, 2016, 558-567. https://doi.org/10.1016/j.msec.2015.08.060
Z. Huang, Q. Chen, Q. Wan, K. Wang, J. Yuan, X. Zhang, L. Tao, Y. Wei, Synthesis of amphiphilic fluorescent polymers via a one-pot combination of multicomponent Hantzsch reaction and RAFT polymerization and their cell imaging applications, Polym. Chem., 8, 2017, 4805-4810. https://doi.org/10.1039/C7PY00926G
Q. Ban, Y. Li, S. Wu, Self-fluorescent polymers for bioimaging, VIEW, 3, 2022, 20200135. https://doi.org/10.1002/VIW.20200135
B-Y. Liu, W-X. Wu, N. Wang, X-Q. Yu, Novel biocompatible fluorescent polymeric micelles based on 1,8-naphthalimide derivatives for cell imaging, Polym. Chem., 6, 2015, 364-368. https://doi.org/10.1039/C4PY01212G
P. Rai, S. Mehrotra, S. Priya, E. Gnansounou, S. K. Sharma, Recent advances in the sustainable design and applications of biodegradable polymers, Bioresour. Technol., 325, 2021, 124739. https://doi.org/10.1016/j.biortech.2021.124739
K. Namsheer, C. S. Rout, Conducting polymers: A comprehensive review on recent advances in synthesis. properties and applications, RSC Adv., 11, 2021, 5659-5697. https://doi.org/10.1039/D0RA07800J
A. de Leon, G. da Silva Ítalo, K. D. Pangilinan, Q. Chen, E. B. Caldona, R. C. Advincula, High performance polymers for oil and gas applications, React. Funct. Polym., 162, 2021, 104878. https://doi.org/10.1016/j.reactfunctpolym.2021.104878
W. Xiaofu, T. Hui, W. Lixiang, Fluorescent polymer materials for detection of explosives, Prog. Chem., 31, 2019, 1509-1527. https://doi.org/10.7536/PC190734
C. Christopherson, D. Mayder, J. Poisson, N. Paisley, C. Tonge, Z. Hudson, 1.8-Naphthalimide-based polymers exhibiting deep-red thermally activated delayed fluorescence and their application in ratiometric temperature sensing, ACS Appl. Mater. Interfaces 12, 17, 2020, 20000-20011. https://doi.org/10.1021/acsami.0c05257
S. Rouhani, F. Nahavandifard, Molecular imprinting-based fluorescent optosensor using a polymerizable 1.8-naphthalimide dye as a florescence functional monomer, Sens. Actuators B Chem., 197, 2014, 185-192. https://doi.org/10.1016/j.snb.2014.02.082
R. M. Duke, E. B. Veale, F. M. Pfeffer, P. Krugerc, T. Gunnlaugsson, Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1.8-naphthalimide-based chemosensors, Chem. Soc. Rev., 39, 2010, 3936-3953. https://doi.org/doi:10.1039/b910560n
G. Saito, D. Velluto, M. Resmini, Synthesis of 1.8-naphthalimide-based probes with fluorescent switch triggered byflufenamic acid, R. Soc. Open Sci., 5, 2018, 172137. http://dx.doi.org/10.1098/rsos.172137
S. Yao, Y. Qian, A naphthalimide-rhodamine two-photon fluorescent turn-on probe for hypochlorous acid by desulfurization-cyclization and fluorescence resonance energy transfer, Sens. Actuators B Chem., 252, 2017, 877-885. https://doi.org/10.1016/j.snb.2017.06.091
Y. Wang, P. Mao, W. Wu, X. Mao, X. Zhao, Z. Xu, Y. Fan, Z. Xu, A novel colorimetric and ratiometric fluorescent Cu2+ sensor based on hydrazone bearing 1.8-naphthalimide and pyrrole moieties, Sens. Actuators B Chem., 251, 2017, 813-820. https://doi.org/10.1016/j.snb.2017.05.134
C. Balakrishnan, L. Subha, M. Neelakantan, S. Mariappan, Synthesis. Spectroscopy. X-Ray Crystallography. DFT Calculations. DNA Binding and molecular docking of a propargyl arms containing Schiff Base, Spectrochim. Acta Part A, 150, 2015, 671-681. https://doi.org/10.1016/j.saa.2015.06.013
D. Liu, J. Qi, X. Liu, Z. Cui, H. Chang, J. Chen, G. Yang, 4-Amino-1.8-naphthalimide-based fluorescent Cd2+ sensor with high selectivity against Zn2+ and its imaging in living cells, Sens. Actuators B Chem., 204, 2014, 655-658. https://doi.org/10.1016/j.snb.2014.08.031
Y. Xu, S. Mao, H. Peng, F. Wang, H. Zhang, S. Aderinto, H. Wu, A fluorescent sensor for selective recognition of Al3+ based on naphthalimide Schiff-Base in aqueous media, J. Lumin., 192, 2017, 56-63. https://doi.org/10.1016/j.jlumin.2017.06.023
F. Lv, Y. Chen, T. Tang, Y. Chen, D. Xu, A new reactive 1.8-naphthalimide derivative for highly selective and sensitive detection of Hg2+, J. Fluoresc., 27, 2017, 1285-1292. https://doi.org/10.1007/s10895-017-2061-y
X. Yuan, X. Xu, C. Zhao, F. Zhang, Y. Lu, Y. Shen, C. Wang, A novel colorimetric and fluorometric fluoride ion probe based on photoinduced electron transfer signalling mechanism, Sens. Actuators B Chem., 253, 2017, 1096-1105. https://doi.org/10.1016/j.snb.2017.07.044
Z. Li, Y. Zhou, K. Yin, Z. Yu, Y. Li, J. Ren, A new fluorescence “turn-on” type chemosensor for Fe3+ based on naphthalimide and coumarin, Dyes Pigm., 105, 2014, 7-11. https://doi.org/10.1016/j.dyepig.2013.12.032
H. Zhang, C. Yin, T. Lin, J. Chao, Y. Zhang, F. Huo, Selective “off-on” detection of magnesium (II) ions using a naphthalimide-derived fluorescent probe. Dyes Pigm., 146, 2017, 344-351. https://doi.org/10.1016/j.dyepig.2017.07.033
J. Ren, Z. Wu, Y. Zhou, Y. Li, Z. Xu, Colorimetric fluoride sensor based on 1.8-naphthalimide derivatives, Dyes Pigm., 91, 2011, 442-445. https://doi.org/10.1016/j.dyepig.2011.04.012
M. Ozdemir, A rhodamine-based colorimetric and fluorescent probe for dual sensing of Cu2+ and Hg2+ ions, J. Photochem. Photobiol. A, 318, 2016, 7-13. https://doi.org/10.1016/j.jphotochem.2015.10.027
I. Ott, X. Qian, Y. Xu, D. Vlecken, I. Marques, D. Kubutat, J. Will, W. Sheldrick, P. Jesse, A. Prokop, A gold (I) phosphine complex containing a naphthalimide ligand functions as a TrxR inhibiting antiproliferative agent and angiogenesis inhibitor. J. Med. Chem., 52, 2009, 763-770. https://doi.org/10.1021/jm8012135
J. Yang, X. Wang, L. Xu, Studies on the synthesis and spectral properties of novel 4-benzofuranyl-1.8-naphthalimide derivatives, Dyes Pigm., 67, 2005, 27-33. https://doi.org/10.1016/j.dyepig.2004.09.017
Y. Fu, X-X. Pang, Z-Q. Wang, H-T. Qu, F. Ye, Synthesis and fluorescent property study of novel 1,8-naphthalimide-based chemosensors, Molecules, 23, 2, 2018, 376. https://doi.org/10.3390/molecules23020376
M. Dodangeh, I. Grabchev, D. Staneva, K. Gharanjig, 1.8-Naphthalimide derivatives as dyes for textile and polymeric materials: a review, Fibers Polym., 22, 9, 2021, 2368-2379. https://doi.org/10.1007/s12221-021-0979-9
T. N. Konstantinova, P. Meallier, I. Grabchev, The synthesis of some 1.8-naphthalic anhydride derivatives as dyes for polymeric materials, Dyes Pigm., 22, 3, 1993, 191-198. https://doi.org/10.1016/0143-7208(93)87006-Z
G. Reynolds, K. Drexhage, New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers, Opt. Commun., 13, 3, 1975, 222-225. https://doi.org/10.1016/0030-4018(75)90085-1
T. N. Konstantinova, P. M. Miladinova, Synthesis and properties of some fluorescent 1.8-naphthalimide derivatives and their copolymers with methyl methacrylate, Appl. Polym. Sci., 111, 2009, 1991-1998. https://doi.org/10.1002/app.29218
T. Konstantinova, R. Lazarova, A. Venkova, V. Vassileva, On the synthesis and photostability of some new naphthalimide dyes, Polym. Degrad. Stab., 84, 3, 2004, 405-409. https://doi.org/10.1016/j.polymdegradstab.2003.11.016
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Chemical Technology and Metallurgy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.