TWO-ANTENNARY OLIGOGLYCINE COMPLEXES WITH INDOMETHACIN IN AQUEOUS MEDIA: FORMATION AND CHARACTERIZATION

Authors

  • Eduarda Encheva Institute of Physical Chemistry "Acad. Rostislaw Kaischew", BAS
  • Dimitrinka Arabadzhieva Bulgarian Academy of Sciences, Institute of Physical Chemistry "Rostislaw Kaischew"
  • Ivan Minkov Sofia University “St. Kliment Ohridski”, Department of Chemistry and Biochemistry, Physiology, and Pathophysiology, Faculty of Medicine; Bulgarian Academy of Sciences, Institute of Physical Chemistry "Rostislaw Kaischew"
  • Anna Gyurova Bulgarian Academy of Sciences, Institute of Physical Chemistry "Rostislaw Kaischew"
  • Vesselin Petrov Sofia University “St. Kliment Ohridski”, Department of Physical Chemistry, Faculty of Chemistry and Pharmacy
  • Elena Mileva Bulgarian Academy of Sciences Institute of Physical Chemistry “Rostislaw Kaischew”

DOI:

https://doi.org/10.59957/jctm.v60.i5.2025.4

Keywords:

antennary oligoglycine, bola-amphiphiles, tectomer, indomethacin, hydrophobic-substance nanocarrier

Abstract

Two-antennary oligoglycines are synthetic, biocompatible bola-amphiphiles composed of homologs with varying hydrophobic-to-hydrophilic ratios. These molecules exhibit a pronounced tendency for self-assembly in aqueous media, resulting in the formation of well-defined supramolecular structures known as tectomers. The present study is focused on one representative of the antennary olygoglycine and investigates its potential as a nanocarrier for hydrophobic drugs. The non-steroidal anti-inflammatory drug indomethacin is used as a model hydrophobic compound. To maximize the entrapment of the drug, we develop an experimental procedure, including the preliminary formation of tectomers at various pH values, followed by the addition of indomethacin. The obtained oligoglycine-indomethacin complexes are further characterized using UV-Vis spectroscopy, Dynamic Light Scattering, and Thin-Liquid-Film techniques. The results demonstrate that the two-antennary oligoglicine effectively captures indomethacin and forms stable complexes in aqueous media. We outline the optimal conditions for drug entrapment and propose hypotheses regarding the mechanisms behind the formation of the mixed complexes. This study advances the understanding of interactions between two-antennary oligoglycines and hydrophobic compounds and highlights their potential for biomedical applications.

References

N. Bovin, A. Tuzikov, A. Chinarev, Oligoglycines: Materials with unlimited potential for nanotechnologies, Nanotechnol. Russ., 3, 2008, 291 - 302.

A. Gyurova, A. Michna, L. Nikolov, E. Mileva, Self-assembly of four- and two-antennary oligoglycines in aqueous medium, Colloids Surf., A, 519, 2017, 106 - 116.

D. Arabadzhieva, A. Gyurova, L. Alexandrova, A. Chinarev, S. Tsygankova, A. Tuzikov, K. Khristov, B. Ranguelov, E. Mileva, Smart Complex Fluids Based on Two-Antennary Oligoglycines, ChemSusChem, 12, 3, 2019, 672 - 683.

D. Arabadzhieva, A. Gyurova, I. Minkov, A. Chinarev, E. Mileva, Fine-tuning of bulk and interfacial characteristics of two-antennary oligoglycines in aqueous solutions, Colloids Surf., A, 630, 2021, 127591.

C. Bamford, L. Brown, E. Cant, A. Ellliott, W. Hanby, B. Malcolm, Structure of polyglycine, Nature, 176, 1955, 396 - 397.

F. Crick, A. Rich, Structure of Polydlycine II, Nature, 176, 1955, 780 - 781.

G. Ramachandran, V. Sasisekharan, C. Ramakrishnan, Molecular structure of polyglycine II, Biochim. Biophys. Acta, 112, 1966, 168 - 170.

R. Nagarajan, Self-assembly of bola amphiphiles, Chem. Eng. Commun., 55, 1987, 251 - 273.

K. Köhler, A. Meister, B. Dobner, S. Drescher, F. Ziethe, A. Blume, Temperature-dependent aggregation behaviour of symmetric long-chain bolaamphiphiles at the air-water interface, Langmuir, 22, 2006, 2668 - 2675.

A. Meister, A. Blume, Self-assembly of bipolar amphiphiles, Curr. Opin. Colloid Interface Sci., 12, 2007, 138 - 147.

D. Lombardo, M. Kiselev, S. Magazu, P. Calandra, Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches, Adv. Condens. Matter Phys., 11, 2015, 1 - 22.

R. Garriga, I. Jurewicz, E. Romero, C. Jarne, V. Cebolla, A. Dalton, E. Muñoz, Two-dimensional, pH-responsive oligoglycine-based nanocarriers, ACS Appl. Mater. Interfaces, 8, 2016, 1913 - 1921.

R. Garriga, I. Jurewicz, S. Seyedin, N. Bardi, S. Totti, B. Matta-Domjan, E. Velliou, M. Alkhorayef, V. Cebolla, J. Razal, A. Dalton, E. Muñoz, Multifunctional, biocompatible and pH-responsive carbon nanotube- and graphene oxide/tectomer hybrid composites and coatings, Nanoscale, 9, 2017, 7791 - 7804.

S. Tsygankova, A. Chinarev, A. Tuzikov, N. Severin, A. Kalachev, J. Rabe, A. Gambaryan, N. Bovin, Biantennary oligoglycines and glyco-oligoglycines self-associating in aqueous medium, Beilstein J. Org. Chem., 10, 2014, 1372 - 1382.

C. Malwade, H. Qu, Cooling Crystallization of Indomethacin: Effect of Supersaturation, Temperature, and Seeding on Polymorphism and Crystal Size Distribution, Org. Process Res. Dev., 22, 6, 2018, 697 - 706.

S. Lohani, I. Nesmelova, R. Suryanarayanan, D. Grant, Spectroscopic Characterization of Molecular Aggregates in Solutions: Impact on Crystallization of Indomethacin Polymorphs from Acetonitrile and Ethanol, Cryst. Growth Des., 11, 2011, 2368 - 2378.

S. Kalepu, V. Nekkanti, Insoluble drug delivery strategies: Review of recent advances and business prospects, Acta Pharm. Sin. B, 5, 2015, 442 - 453.

P. Cox, P. Manson, γ-Indomethacin at 120 K, Acta Crystallogr., 59, 2003, 986 - 988.

J. Aceves-Hernandez, I. Nicolas-Vazquez, F. Aceves, J. Hinojosa-Torres, M. Paz, V. Castano, Indomethacin Polymorphs: Experimental and Conformational Analysis, J. Pharm. Sci., 98, 7, 2009, 2448 - 2463.

C. Strachan, T. Rades, K. Gordon, A theoretical and spectroscopic study of γ-crystalline and amorphous indomethacin, J. Pharm. Pharmacol., 59, 2007, 261 - 269.

Y. Hattori, M. Otsuka, Analysis of the stabilization process of indomethacin crystals via π–π and CH–π interactions measured by Raman spectroscopy and X-ray diffraction, Chem. Phys. Lett., 661, 2016, 114 - 118.

H. Britton, R. Robinson, Universal buffer solutions and the dissociation constant of veronal, J. Chem. Soc., 75, 1931, 1456 - 1462.

M. O’Brien, J. McCauley, E. Cohen, Indomethacin, in: K. Florey (Ed), Analytical Profiles of Drug Substances, United Kingdom, Academic Press: London, UK, 1984, Volume 13, pp. 211 - 238.

H. Perkampus, UV-VIS spectroscopy and its Applications, Springer: Berlin, Heidelberg, Germany, 1992.

R. Maheshwari, A. Rathore, A. Agrawal, M. Gupta, New spectrophotometric estimation of indomethacin capsules with niacinamide as a hydrotropic solubilizing agent, Pharm. Methods, 2, 2011, 184 - 188.

D. Exerowa, P. Kruglyakov, Foam and Foam Films: Theory, Experiment, Application, Elsevier: Amsterdam, New York, 1998, pp. 42 - 87.

D. Platikanov, D. Exerowa, Fundamentals of foam films, in: D. Exerowa, G. Gochev, D. Platikanov, L. Liggieri, R. Miller (Eds.), Foam Films and Foams, 1st ed., CRC Press, Taylor & Francis Group, Boca Raton, Fl, London, UK, 2019, pp. 77 - 98.

V. Michailova, I. Berlinova, P. Iliev, L. Ivanov, S. Titeva, G. Momekov, I. Dimitrov, Nanoparticles formed from PNIPAM-g-PEO copolymers in the presence of indomethacin, Int. J. Pharm., 384, 2010, 154 - 164.

E. Piacentini, Encapsulation Efficiency, in: E. Drioli, L. Giorno (Eds.), Encyclopedia of Membranes, 1st ed., Springer: Berlin, Heidelberg, Germany, 2016; pp. 706 - 707.

M. Vitha, Spectroscopy: Principles and Instrumentation, Wiley, 2018, p.100.

E. Mileva, P. Tchoukov, Surfactant nanostructures in foam films, T. Tadros (Eds.), Colloid Stability. The Role of Surface Forces, Part I, Wiley-VCH Verlag, GmbH&Co. KGaA, Weinheim, Germany, 2007, pp. 187 - 206.

J. Comer, S. Judge, D. Matthews, L. Towes, B. Falcone, J. Goodman, J. Dearden, The intrinsic aqueous solubility of indomethacin, ADMET and DMPK, 2, 2014, 18 - 32.

Downloads

Published

2025-09-03

Issue

Section

Articles