FUNCTIONAL GROUPS AND STRUCTURAL FEATURES OF ANTIOXIDANTS: A REVIEW
DOI:
https://doi.org/10.59957/jctm.v60.i6.2025.1Keywords:
antioxidant activity, functional groups, redox-active moieties, free radicals, oxidative chain reactions, conjugated π-systemsAbstract
The antioxidant activity of bioactive compounds is fundamentally determined by their chemical structures and, more specifically, by the nature and positioning of key functional groups. Despite the structural diversity among natural and synthetic antioxidants, many share common molecular features that enable them to neutralize reactive oxygen and nitrogen species. The present review is an attempt to systematize the classification of antioxidants according to their functional groups. The role of redox-active moieties such as phenolic hydroxyl (-OH), thiol (-SH), amine (-NH2), and carbonyl (C=O) groups is also highlighted. The groups facilitate electron or hydrogen donation, stabilizing free radicals and interrupting oxidative chain reactions. Conjugated π-systems, such as those found in carotenoids and polyphenols, further enhance antioxidant capacity by allowing electron delocalization across the molecule. By examining the structural basis of antioxidant mechanisms, the review underscores the critical relationship between molecular structure and biological function in oxidative stress mitigation.
References
C.A. Juan, J.M. Pérez de la Lastra, F.J. Plou, E. Pérez-Lebeña, The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies, Int. J. Mol. Sci., 22, 2021, 4642.
S.K. Bardaweel, M. Gul, M. Alzweiri, A. Ishaqat, H.A. AlSalamat, R.M. Bashatwah, Reactive oxygen species: the dual role in physiological and pathological conditions of the human body, Eurasian J. Med., 50, 2018, 193–201.
A. Bhattacharyya, R. Chattopadhyay, S. Mitra, S.E. Crowe, Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases, Physiol. Rev., 94, 2014, 329–354.
Y. Hong, A. Boiti, D. Vallone, N.S. Foulkes, Reactive oxygen species signaling and oxidative stress: transcriptional regulation and evolution, Antioxidants (Basel), 13, 2024, 312.
C.N. Paiva, M.T. Bozza, Are reactive oxygen species always detrimental to pathogens?, Antioxid. Redox Signal., 20, 2014, 1000–1037.
B. Uttara, A.V. Singh, P. Zamboni, R.T. Mahajan, Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options, Curr. Neuropharmacol., 7, 2009, 65–74.
A. Phaniendra, D.B. Jestadi, L. Periyasamy, Free radicals: properties, sources, targets, and their implication in various diseases, Indian J. Clin. Biochem., 30, 2015, 11–26.
L.A. Pham-Huy, H. He, C. Pham-Huy, Free radicals, antioxidants in disease and health, Int. J. Biomed. Sci., 4, 2008, 89–96.
A.T. Diplock, Antioxidants and free radical scavengers, New Compr. Biochem., 1994, 113–130.
V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: impact on human health, Pharmacogn. Rev., 4, 2010, 118–126.
M. Dizdaroglu, P. Jaruga, M. Birincioglu, H. Rodriguez, Free radical-induced damage to DNA: mechanisms and measurement, Free Radic. Biol. Med., 32, 2002, 1102–1115.
B. Halliwell, Antioxidants: the basics—what they are and how to evaluate them, Adv. Pharmacol., 38, 1996, 3–20.
J.M. Lü, P.H. Lin, Q. Yao, C. Chen, Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems, J. Cell. Mol. Med., 14, 2010, 840–860.
S.G. Tumilaar, A. Hardianto, H. Dohi, D. Kurnia, A comprehensive review of free radicals, oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds, J. Chem., 2024, 5594386.
J.S. Dawane, V.A. Pandit, Understanding redox homeostasis and its role in cancer, J. Clin. Diagn. Res., 6, 2012, 1796–1802.
Y. Gao, A.L. Focsan, L.D. Kispert, Antioxidant activity in supramolecular carotenoid complexes favored by nonpolar environment and disfavored by hydrogen bonding, Antioxidants (Basel), 9, 2020, 625.
H.E. Khoo, K.N. Prasad, K.W. Kong, Y. Jiang, A. Ismail, Carotenoids and their isomers: color pigments in fruits and vegetables, Molecules, 16, 2011, 1710–1738.
R.C. Mordi, O.T. Ademosun, C.O. Ajanaku, I.O. Olanrewaju, J.C. Walton, Free radical mediated oxidative degradation of carotenes and xanthophylls, Molecules, 25, 2020, 1038. [19] Z. Zhao, J. Chen, F. Ci, H. Pang, N. Cheng, A. Xing, α-Carotene: a valuable carotenoid in biological and medical research, J. Sci. Food Agric., 102, 2022, 5606–5617.
P. Di Mascio, S. Kaiser, H. Sies, Lycopene as the most efficient biological carotenoid singlet oxygen quencher, Arch. Biochem. Biophys., 274, 1989, 532–538.
R.G. Fassett, J.S. Coombes, Astaxanthin: a potential therapeutic agent in cardiovascular disease, Mar. Drugs, 9, 2011, 447–465.
D. Augustynska, M. Jemioła-Rzemińska, K. Burda, K. Strzałka, Influence of polar and nonpolar carotenoids on structural and adhesive properties of model membranes, Chem. Biol. Interact., 239, 2015, 19–25.
X. Liu, T. Osawa, Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer, Biochem. Biophys. Res. Commun., 357, 2007, 187–193.
A. Akbari, G. Jelodar, S. Nazifi, J. Sajedianfard, An overview of the characteristics and function of vitamin C in various tissues: relying on its antioxidant function, Zahedan J. Res. Med. Sci., 18, 2016, e4037.
K. Schank, Reductones, Synthesis, 1972, 176–190.
D. Semmingsen, The crystal structure of reductic acid (2-cyclopentene-2,3-diol-1-one), Acta Chem. Scand. B, 31, 1977, 81–85.
S.J. Padayatty, A. Katz, Y. Wang, P. Eck, O. Kwon, J.H. Lee, S. Chen, C. Corpe, A. Dutta, S.K. Dutta, M. Levine, Vitamin C as an antioxidant: evaluation of its role in disease prevention, J. Am. Coll. Nutr., 22, 2003, 18–35.
K. Miura, F. Yazama, A. Tai, Oxidative stress-mediated antitumor activity of erythorbic acid in high doses, Biochem. Biophys. Rep., 3, 2015, 117–122.
H.A. Elkattawy, F.M. Ghoneim, M.A. Eladl, E. Said, H.A. Ebrahim, M. El-Shafey, S.M. Asseri, M. El-Sherbiny, R.H. Alsalamah, N.M. Elsherbiny, et al., Vitamin K2 (menaquinone-7) reverses age-related structural and cognitive deterioration in naturally aging rats, Antioxidants (Basel), 11, 2022, 514.
G. Lenaz, M.L. Genova, Quinones, in Encyclopedia of Biological Chemistry, 2nd ed., Elsevier, 2013, pp. 722–729.
J.L. Bolton, T. Dunlap, Formation and biological targets of quinones: cytotoxic versus cytoprotective effects, Chem. Res. Toxicol., 30, 2017, 13–37.
F.L. Crane, Biochemical functions of coenzyme Q10, J. Am. Coll. Nutr., 20, 2001, 591–598.
A. Kröger, M. Klingenberg, Quinones and nicotinamide nucleotides associated with electron transfer, Vitamins Horm., 28, 1971, 533–574.
E. Niki, Mechanisms and dynamics of antioxidant action of ubiquinol, Mol. Asp. Med., 18, 1997, 63–70.
H.F.E. Heng, X.L. Ong, P.Y.E. Chow, Antioxidant action and effectiveness of sulfur-containing amino acid during deep frying, J. Food Sci. Technol., 57, 2020, 1150–1157.
M. Pace, C. Giorgi, G. Lombardozzi, A. Cimini, V. Castelli, M. d’Angelo, Exploring the antioxidant roles of cysteine and selenocysteine in cellular aging and redox regulation, Biomolecules, 15, 2025, 1115.
R.L. Levine, J. Moskovitz, E.R. Stadtman, Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation, IUBMB Life, 50, 2000, 301–307.
P.F. Surai, K. Earle-Payne, M.T. Kidd, Taurine as a natural antioxidant: from direct antioxidant effects to protective action in various toxicological models, Antioxidants (Basel), 10, 2021, 1876.
L. Valgimigli, D.A. Pratt, Mechanisms of antioxidant activity, Acc. Chem. Res., 48, 2015, 966–975.
W. Horton, S. Peerannawar, B. Török, et al., Structural chemistry insights into antioxidants, Struct. Chem., 30, 2019, 23–35.
B. Jasiewicz, W. Kozanecka-Okupnik, M. Przygodzki, B. Warżajtis, U. Rychlewska, T. Pospieszny, L. Mrówczyńska, Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives, Sci. Rep., 11, 2021, 15425.
N. Lu, Y. He, C. Chen, R. Tian, Q. Xiao, Y.-Y. Peng, Tyrosine can protect against oxidative stress through ferryl hemoglobin reduction, Toxicol. In Vitro, 28, 2014, 847–855.
A.M. Wade, H.N. Tucker, Antioxidant characteristics of L-histidine, J. Nutr. Biochem., 9, 1998, 308–315.
K.S. Kulp, P.R. Vulliet, Mimosine blocks cell cycle progression by chelating iron in asynchronous human breast cancer cells, Toxicol. Appl. Pharmacol., 139, 1996, 356–364.
A. Pérez‑González, L. Muñoz‑Rugeles, J.R. Álvarez‑Idaboy, Tryptophan: antioxidant or target of oxidative stress? A quantum chemistry elucidation, RSC Adv., 4, 2014, 43320–43329.
S. Christen, E. Peterhans, R. Stocker, Radical scavenging by tryptophan and its metabolites through electron transfer based processes, J. Mol. Model., 21, 2015, 213.
K. Xu, H. Liu, M. Bai, J. Gao, X. Wu, Y. Yin, Redox properties of tryptophan metabolism and the concept of tryptophan use in pregnancy, Int. J. Mol. Sci., 18, 2017, 1595.
K. Goda, Y. Hamane, R. Kishimoto, Y. Ogishi, Radical scavenging properties of tryptophan metabolites. Estimation of their radical reactivity, Adv. Exp. Med. Biol., 467, 1999, 397–402.
A.V. Zhuravlev, G.A. Zakharov, B.F. Shchegolev, E.V. Savvateeva-Popova, Antioxidant properties of kynurenines: density functional theory calculations, PLoS Comput. Biol., 12, 2016, e1005213.
A. Cano, O. Alcaraz, M.B. Arnao, Free radical-scavenging activity of indolic compounds in aqueous and ethanolic media, Anal. Bioanal. Chem., 376, 2003, 33–37.
M.S. Estevão, L.C. Carvalho, D. Ribeiro, D. Couto, M. Freitas, A. Gomes, L.M. Ferreira, E. Fernandes, M.M.B. Marques, Antioxidant activity of unexplored indole derivatives: synthesis and screening, Eur. J. Med. Chem., 45, 2010, 4869–4878.
E. Wirthgen, A. Hoeflich, A. Rebl, J. Günther, Kynurenic acid: the Janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions, Front. Immunol., 8, 2018, 1957.
R. Lugo-Huitrón, T. Blanco-Ayala, P. Ugalde-Muñiz, P. Carrillo-Mora, J. Pedraza-Chaverrí, D. Silva-Adaya, P.D. Maldonado, I. Torres, E. Pinzón, E. Ortiz-Islas, T. López, E. García, B. Pineda, M. Torres-Ramos, A. Santamaría, V.P. La Cruz, On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress, Neurotoxicol. Teratol., 33, 2011, 538–547.
R.J. Reiter, D.X. Tan, J.C. Mayo, R.M. Sainz, J. Leon, Z. Czarnocki, Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans, Acta Biochim. Pol., 50, 2003, 1129–1146.
V. Politi, S. D’Alessio, G. Di Stazio, G. De Luca, Antioxidant properties of indole-3-pyruvic acid, in: G.A. Filippini, C.V.L. Costa, A. Bertazzo (Eds.), Recent Advances in Tryptophan Research, Adv. Exp. Med. Biol., 398, 1996, Springer, Boston, MA.
D. Kim, H. Kim, K. Kim, S. Roh, The protective effect of indole-3-acetic acid (IAA) on H₂O₂-damaged human dental pulp stem cells is mediated by the AKT pathway and involves increased expression of Nrf2 and heme oxygenase‑1 (HO‑1), Oxid. Med. Cell Longev., 2017, 2017, 8639485.
S. Azouzi, H. Santuz, S. Morandat, C. Pereira, F. Côté, O. Hermine, K. El Kirat, Y. Colin, C. Le Van Kim, C. Etchebest, P. Amireault, Antioxidant and membrane binding properties of serotonin protect lipids from oxidation, Biophys. J., 112, 2017, 1863–1873.
Å. Betten, C. Dahlgren, S. Hermodsson, K. Hellstrand, Serotonin protects NK cells against oxidatively induced functional inhibition and apoptosis, J. Leukoc. Biol., 70, 2001, 65–72.
S.C. Lu, Glutathione synthesis, Biochim. Biophys. Acta, 1830, 2013, 3143–3153.
M. Shahid, F. Subhan, N.U. Islam, N. Ahmad, U. Farooq, S. Abbas, S. Akbar, I. Ullah, N. Raziq, Z.U. Din, The antioxidant N-(2-mercaptopropionyl)-glycine (tiopronin) attenuates expression of neuropathic allodynia and hyperalgesia, Naunyn Schmiedebergs Arch. Pharmacol., 394, 2021, 603–617.
P. Uribe, J. Meriño, A. Bravo, F. Zambrano, M. Schulz, J.V. Villegas, R. Sánchez, Antioxidant effects of penicillamine against in vitro-induced oxidative stress in human spermatozoa, Andrologia, 52, 2020, e13553.
I.K. Cheah, B. Halliwell, Ergothioneine, recent developments, Redox Biol., 42, 2021, 101868.
I. Borodina, L.C. Kenny, C.M. McCarthy, K. Paramasivan, E. Pretorius, T.J. Roberts, S.A. van der Hoek, D.B. Kell, The biology of ergothioneine, an antioxidant nutraceutical, Nutr. Res. Rev., 33(2), 2020, 190–217.
Y.J. Shin, J.M. Seo, T.Y. Chung, J.Y. Hyon, W.R. Wee, Effect of cysteamine on oxidative stress-induced cell death of human corneal endothelial cells, Curr. Eye Res., 36(10), 2011, 910–917.
L. Gallego-Villar, L. Hannibal, J. Häberle, B. Thöny, T. Ben-Omran, G.K. Nasrallah, A.N. Dewik, W.D. Kruger, H.J. Blom, Cysteamine revisited: repair of arginine to cysteine mutations, J. Inherit. Metab. Dis., 40(4), 2017, 555–567.
B.D. Paul, S.H. Snyder, Therapeutic applications of cysteamine and cystamine in neurodegenerative and neuropsychiatric diseases, Front. Neurol., 10, 2019, 1315.
H. Kim, J. Park, H. Lee, et al., Methimazole as an antioxidant and immunomodulator in thyroid cells: mechanisms involving interferon-γ signaling and H₂O₂ scavenging, Mol. Pharmacol., 60(5), 2001, 972–980.
Y.M. Roman, The role of uric acid in human health: insights from the uricase gene, J. Pers. Med., 13(9), 2023, 1409.
B.N. Ames, R. Cathcart, E. Schwiers, P. Hochstein, Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis, Proc. Natl. Acad. Sci. U.S.A., 78(11), 1981, 6858–6862.
K.J. Davies, A. Sevanian, S.F. Muakkassah-Kelly, P. Hochstein, Uric acid-iron ion complexes: a new aspect of the antioxidant functions of uric acid, Biochem. J., 235(3), 1986, 747–754.
B.F. Becker, N. Reinholz, T. Ozçelik, B. Leipert, E. Gerlach, Uric acid as radical scavenger and antioxidant in the heart, Pflugers Arch., 415(2), 1989, 127–135.
H. Kaur, B. Halliwell, Action of biologically-relevant oxidizing species upon uric acid: identification of uric acid oxidation products, Chem. Biol. Interact., 73(2-3), 1990, 235–247.
Y.Y. Sautin, R.J. Johnson, Uric acid: the oxidant-antioxidant paradox, Nucleosides Nucleotides Nucleic Acids, 27(6), 2008, 608–619.
Q.V. Vo, M.V. Bay, P.C. Nam, A. Mechler, Hydroxyl radical scavenging of indole‑3‑carbinol: a mechanistic and kinetic study, ACS Omega, 4(21), 2019, 19375–19381.
S. Fan, Q. Meng, T. Saha, F.H. Sarkar, E.M. Rosen, Low concentrations of diindolylmethane, a metabolite of indole‑3‑carbinol, protect against oxidative stress in a BRCA1-dependent manner, Cancer Res., 69(15), 2009, 6083–6091.
C.A. Adin, Bilirubin as a therapeutic molecule: challenges and opportunities, Antioxidants, 10(10), 2021, 1536.
D.E. Baranano, M. Rao, C.D. Ferris, S.H. Snyder, Biliverdin reductase: a major physiologic cytoprotectant, Proc. Natl. Acad. Sci. U.S.A., 99(25), 2002, 16093–16098.
T.W. Sedlak, S.H. Snyder, Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle, Pediatrics, 113(6), 2004, 1776–1782.
R. Stocker, Y. Yamamoto, A.F. McDonagh, A.N. Glazer, B.N. Ames, Bilirubin is an antioxidant of possible physiological importance, Science, 235(4792), 1987, 1043–1046.
M. Minetti, C. Mallozzi, A.M. Di Stasi, D. Pietraforte, Bilirubin is an effective antioxidant of peroxynitrite-mediated protein oxidation in human blood plasma, Arch. Biochem. Biophys., 352(2), 1998, 165–174.
G.L. Hatfield, L.R. Barclay, Bilirubin as an antioxidant: kinetic studies of the reaction of bilirubin with peroxyl radicals in solution, micelles, and lipid bilayers, Org. Lett., 6(10), 2004, 1539–1542.
R.B. Rodrigues, M.M. de Oliveira, F.P. Garcia, T. Ueda-Nakamura, S.O. Silva, C.V. Nakamura, Dithiothreitol reduces oxidative stress and necrosis caused by ultraviolet A radiation in L929 fibroblasts, Photochem. Photobiol. Sci., 23, 2024.
X. Song, Z. Yue, L. Nie, P. Zhao, K. Zhu, Q. Wang, Biological functions of diallyl disulfide, a garlic-derived natural organic sulfur compound, Evid. Based Complement. Alternat. Med., 2021, 5103626.
H.F. Hasan, G.R. Abdel-Hamid, S.I. Ebrahim, Antioxidant and anti-inflammatory effects of diallyl disulfide on hepatotoxicity induced by cyclophosphamide in rats, Nat. Prod. Commun., 15(10), 2020, 1–10.
Y. Sun, T. Yang, R.K. Leak, J. Chen, F. Zhang, Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases, CNS Neurol. Disord. Drug Targets, 16(3), 2017, 326–338.
L. Packer, E.H. Witt, H.J. Tritschler, Alpha-lipoic acid as a biological antioxidant, Free Radic. Biol. Med., 19(2), 1995, 227–250.
S. Ghibu, C. Richard, C. Vergely, M. Zeller, Y. Cottin, L. Rochette, Antioxidant properties of an endogenous thiol: alpha-lipoic acid, useful in the prevention of cardiovascular diseases, J. Cardiovasc. Pharmacol., 54(5), 2009, 391–398.
R.B. Rodrigues, M.M. de Oliveira, F.P. Garcia, T. Ueda-Nakamura, S. de Oliveira Silva, C.V. Nakamura, Dithiothreitol reduces oxidative stress and necrosis caused by ultraviolet A radiation in L929 fibroblasts, Photochem. Photobiol. Sci., 23(2), 2024, 271–284.
M. Chopra, N. Scott, J. McMurray, J. McLay, A. Bridges, W.E. Smith, J.J. Belch, Captopril: a free radical scavenger, Br. J. Clin. Pharmacol., 27(3), 1989, 396–399.
H. Sutanto, B.H. Susanto, M. Nasikin, Solubility and antioxidant potential of a pyrogallol derivative for biodiesel additive, Molecules, 24(13), 2019, 2439.
S.B. Ozturk Sarikaya, Acetylcholinesterase inhibitory potential and antioxidant properties of pyrogallol, J. Enzyme Inhib. Med. Chem., 30(5), 2015, 761–766.
N. Tejero, À. González-García, J. González-Lafont, J.M. Lluch, Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study, J. Am. Chem. Soc., 129(18), 2007, 5977–5984.
Disulfide bond formation involves a quinhydrone-type charge-transfer complex, Proc. Natl. Acad. Sci. U.S.A., 100(24), 2003, 13779–13784.
C. Manna, P. Galletti, V. Cucciolla, G. Montedoro, V. Zappia, Olive oil hydroxytyrosol protects human erythrocytes against oxidative damages, J. Nutr. Biochem., 10(3), 1999, 159–165.
I.C. Vlachogianni, E. Fragopoulou, I.K. Kostakis, S. Antonopoulou, In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives, Food Chem., 177, 2015, 165–173.
M.I. Covas, E. Miró-Casas, M. Fitó, M. Farré-Albadalejo, E. Gimeno, J. Marrugat, R. De La Torre, Bioavailability of tyrosol, an antioxidant phenolic compound present in wine and olive oil, in humans, Drugs Exp. Clin. Res., 29(5-6), 2003, 203–206.
N.Y. Yanishlieva, E.M. Marinova, M.H. Gordon, V.G. Raneva, Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems, Food Chem., 64(1), 1999, 59–66.
M.F. Nagoor Meeran, H. Javed, H. Al Taee, S. Azimullah, S.K. Ojha, Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development, Front. Pharmacol., 8, 2017, 380.
M. Chroho, Y. Rouphael, S.A. Petropoulos, L. Bouissane, Carvacrol and thymol content affects the antioxidant and antibacterial activity of Origanum compactum and Thymus zygis essential oils, Antibiotics (Basel), 13(2), 2024, 139.
M. Taibi, A. Elbouzidi, M. Haddou, A. Baraich, D. Ou-Yahia, R. Bellaouchi, R.A. Mothana, H.M. Al-Yousef, A. Asehraou, M. Addi, B.E. Guerrouj, K. Chaabane, Evaluation of the interaction between carvacrol and thymol, major compounds of Ptychotis verticillata essential oil: antioxidant, anti-inflammatory and anticancer activities against breast cancer lines, Life (Basel), 14(8), 2024, 1037.
F. Khallouki, R.W. Owen, M. Akdad, B. El Bouhali, S. Silvente-Poirot, et al., Vitamin E: an overview, Mol. Nutr., Elsevier, 2020, pp. 51–66.
A. Atiq, H.J. Lee, A. Khan, M.H. Kang, I.U. Rehman, R. Ahmad, M. Tahir, J. Ali, K. Choe, J.S. Park, M.O. Kim, Vitamin E Analog Trolox Attenuates MPTP-Induced Parkinson’s Disease in Mice, Mitigating Oxidative Stress, Neuroinflammation, and Motor Impairment, Int. J. Mol. Sci., 24(12), 2023, 9942.
I. Kilic, Y. Yeşiloğlu, Y. Bayrak, Spectroscopic studies on the antioxidant activity of ellagic acid, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 2014, 447–452.
J.N. Barboza, C. da Silva Maia Bezerra Filho, R.O. Silva, J.V.R. Medeiros, D.P. de Sousa, An Overview on the Anti-inflammatory Potential and Antioxidant Profile of Eugenol, Oxid. Med. Cell Longev., 2018, 3957262.
K.I. Priyadarsini, The Chemistry of Curcumin: From Extraction to Therapeutic Agent, Molecules, 19(12), 2014, 20091–20112.
X. Xu, A. Liu, S. Hu, I. Ares, M.R. Martínez-Larrañaga, X. Wang, M. Martínez, A. Anadón, M.A. Martínez, Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action, Food Chem., 353, 2021, 129488.
A. Frankel, S. Huang, J.K. Kanner, Polyhydroxy chalcones and flavanones as antioxidants for edible oils, Food Chem., 12(3), 1983, 205–212.
M. Leopoldini, T. Marino, N. Russo, M. Toscano, Antioxidant Properties of Phenolic Compounds: H-Atom versus Electron Transfer Mechanism, J. Phys. Chem. A, 108(22), 2004, 4916–4922.
A. Kurek-Górecka, A. Rzepecka-Stojko, M. Górecki, J. Stojko, M. Sosada, G. Swierczek-Zieba, Structure and antioxidant activity of polyphenols derived from propolis, Molecules, 19(1), 2013, 78–101.
B. Alcalde, M. Granados, J. Saurina, Exploring the antioxidant features of polyphenols by spectroscopic and electrochemical methods, Antioxidants (Basel), 8(11), 2019, 523.
B. Velika, I. Kron, Antioxidant properties of benzoic acid derivatives against superoxide radical, Free Radic. Antioxid., 2(4), 2012, 62–67.
A. Moazzen, N. Öztinen, E. Ak-Sakalli, M. Koşar, Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes, Heliyon, 8(9), 2022, e10467.
A. Tai, T. Sawano, H. Ito, Antioxidative properties of vanillic acid esters in multiple antioxidant assays, Biosci. Biotechnol. Biochem., 76(2), 2012, 314–318.
Q.V. Vo, M.V. Bay, P.C. Nam, D.T. Quang, M. Flavel, N.T. Hoa, A. Mechler, Theoretical and experimental studies of the antioxidant and antinitrosant activity of syringic acid, J. Org. Chem., 85(23), 2020, 15514–15520.
Z. Huang, Y. Chen, R. Huang, Z. Zhao, Identification and structure–activity relationship of recovered phenolics with antioxidant and antihyperglycemic potential from sugarcane molasses vinasse, Foods, 11(19), 2022, 3131.
B. Badhani, N. Sharma, R. Kakkar, Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications, RSC Adv., 5(35), 2015, 27540–27557.
D. Skroza, V. Šimat, L. Vrdoljak, N. Jolić, A. Skelin, M. Čagalj, R. Frleta, I. Generalić Mekinić, Investigation of antioxidant synergisms and antagonisms among phenolic acids in the model matrices using FRAP and ORAC methods, Antioxidants (Basel), 11(9), 2022, 1784.
E. Barone, V. Calabrese, C. Mancuso, Ferulic acid and its therapeutic potential as a hormetin for age-related diseases, Biogerontology, 10(2), 2009, 97–108.
H. Zhu, S. Chen, S. Hao, Z. Zhang, W. Wang, S. Yao, Double roles of hydroxycinnamic acid derivatives in protection against lysozyme oxidation, Biochim. Biophys. Acta, 1760(12), 2006, 1810–1818.
J.C. Cheng, F. Dai, B. Zhou, L. Yang, Z.L. Liu, Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure–activity relationship, Food Chem., 104(1), 2007, 132–139.
F.A. Khan, A. Maalik, G. Murtaza, Inhibitory mechanism against oxidative stress of caffeic acid, J. Food Drug Anal., 24(4), 2016, 695–702.
I. Gülçin, Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid), Toxicology, 217(2-3), 2006, 213–220.
T. Nakayama, B. Uno, Reactivities of hydroxycinnamic acid derivatives involving caffeic acid toward electrogenerated superoxide in N,N-dimethylformamide, Electrochem., 3(3), 2022, 347–360.
J.R. Purushothaman, M. Rizwanullah, Ferulic acid: A comprehensive review, Cureus, 16(8), 2024, e68063.
I. Kiliç, Y. Yeşiloğlu, Spectroscopic studies on the antioxidant activity of p‑coumaric acid, Spectrochim. Acta A Mol. Biomol. Spectrosc., 115, 2013, 719–724.
M. Imran, T.A. Gondal, A. Imran, M. Shahbaz, R. Amir, M.W. Sajid, T.B. Qaisrani, M. Atif, G. Hussain, et al., Therapeutic potential of rosmarinic acid: A comprehensive review, Appl. Sci., 9(15), 2019, 3139.
A. Kola, G. Vigni, S. Lamponi, D. Valensin, Protective contribution of rosmarinic acid in rosemary extract against copper-induced oxidative stress, Antioxidants, 13(11), 2024, 1419.
J. Santana-Gálvez, L. Cisneros-Zevallos, D.A. Jacobo-Velázquez, Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome, Molecules, 22(3), 2017, 358.
J. Huang, M. Xie, L. He, X. Song, T. Cao, Chlorogenic acid: A review on its mechanisms of anti‑inflammation, disease treatment, and related delivery systems, Front. Pharmacol., 14, 2023, 1218015.
C.A. Rice-Evans, N.J. Miller, G. Paganga, Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free Radic. Biol. Med., 20(7), 1996, 933–956.
C. Manach, G. Williamson, C. Morand, A. Scalbert, C. Rémésy, Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies, Am. J. Clin. Nutr., 81(1 Suppl), 2005, 230S–242S.
B. Godlewska-Żyłkiewicz, R. Świsłocka, M. Kalinowska, A. Golonko, G. Świderski, Ż. Arciszewska, E. Nalewajko-Sieliwoniuk, M. Naumowicz, W. Lewandowski, Biologically active compounds of plants: Structure-related antioxidant, microbiological and cytotoxic activity of selected carboxylic acids, Materials, 13(19), 2020, 4454.
S. Kumar, A.K. Pandey, Chemistry and biological activities of flavonoids: An overview, ScientificWorldJournal, 2013, 162750.
K.E. Heim, A.R. Tagliaferro, D.J. Bobilya, Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, J. Nutr. Biochem., 13(10), 2002, 572–584.
P.G. Pietta, Flavonoids as antioxidants, J. Nat. Prod., 63(7), 2000, 1035–1042.
M.B. Ruiz-Larrea, A.R. Mohan, G. Paganga, N.J. Miller, G.P. Bolwell, C.A. Rice-Evans, Antioxidant activity of phytoestrogenic isoflavones, Free Radic. Res., 26(1), 1997, 63–70.
L. Křížová, K. Dadáková, J. Kašparovská, T. Kašparovský, Isoflavones, Molecules, 24(6), 2019, 1076.
M. Zahra, H. Abrahamse, B.P. George, Flavonoids: Antioxidant powerhouses and their role in nanomedicine, Antioxidants (Basel), 13(8), 2024, 922.
Characterization and fate of black currant and bilberry flavonols in enzyme-aided processing, J. Agric. Food Chem., 56(9), 2008, 3136–3144.
S. Burda, W. Oleszek, Antioxidant and antiradical activities of flavonoids, J. Agric. Food Chem., 49(6), 2001, 2774–2779.
G. Nam, M. Hong, J. Lee, H.J. Lee, Y. Ji, J. Kang, M.H. Baik, M.H. Lim, Multiple reactivities of flavonoids towards pathological elements in Alzheimer's disease: structure-activity relationship, Chem. Sci., 11(37), 2020, 10243–10254.
L. Mira, M.T. Fernandez, M. Santos, R. Rocha, M.H. Florêncio, K.R. Jennings, Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity, Free Radic. Res., 36(11), 2002, 1199–1208.
M. Říha, J. Karlíčková, T. Filipský, K. Macáková, L. Rocha, P. Bovicelli, et al., In vitro evaluation of copper-chelating properties of flavonoids, RSC Adv., 4(60), 2014, 32628–32638.
M. Alam, F. Ahsan, T. Mahmood, A. Shamim, S. Parveen, M. Shariq, V.A. Ansari, Meticulous parade on naringin respecting its pharmacological activities and novel formulations, Avicenna J. Phytomed., 12(5), 2022, 457–474.
M.A. Alam, N. Subhan, M.M. Rahman, S.J. Uddin, H.M. Reza, S.D. Sarker, Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action, Adv. Nutr., 5(4), 2014, 404–417.
K. Wdowiak, J. Walkowiak, R. Pietrzak, A. Bazan‑Woźniak, J. Cielecka‑Piontek, Bioavailability of hesperidin and its aglycone hesperetin—compounds found in citrus fruits as a parameter conditioning the pro‑health potential (neuroprotective and antidiabetic activity)—mini‑review, Nutrients, 14(13), 2022, 2647.
M.P. Kapoor, M. Moriwaki, K. Minoura, D. Timm, A. Abe, K. Kito, Structural investigation of hesperetin‑7‑O‑glucoside inclusion complex with β‑cyclodextrin: a spectroscopic assessment, Molecules, 27(17), 2022, 5395.
T. Zhao, Y. Sun, Y. Yang, Z. Liu, J. Zhao, C. Zhang, C. Guo, Flavonoid transport mechanisms: how do plants sequester flavonoids into vacuoles?, Plant Physiol. Biochem., 157, 2020, 447–457.
A. Buer, N. Djordjevic, Flavonoids: new roles for old molecules, J. Integr. Plant Biol., 51(7), 2009, 703–712.
R. Zhao, L. Wang, H. Wang, X. Zhang, The role of glycosylation in regulating flavonoid bioactivity and cellular localization, J. Biol. Chem., 294(44), 2019, 16329–16337. [151] M.R. De Moraes, S.M. Ryan, H.T. Godoy, A.L. Thomas, J.G.S. Maia, K.M. Richards, R.E. Smith, Phenolic compounds and metals in some edible Annonaceae fruits, Biol. Trace Elem. Res., 197(2), 2020, 676–682.
Y. Sugita‑Konishi, Y. Hara‑Kudo, F. Amano, T. Okubo, N. Aoi, M. Iwaki, S. Kumagai, Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic Escherichia coli O157:H7, Biochim. Biophys. Acta, 1472(1–2), 1999, 42–50.
T. Takahashi, S. Nagatoishi, D. Kuroda, K. Tsumoto, Thermodynamic and computational analyses reveal the functional roles of the galloyl group of tea catechins in molecular recognition, PLoS One, 13(10), 2018, e0204856.
R. Mattioli, A. Francioso, L. Mosca, P. Silva, Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases, Molecules, 25(17), 2020, 3809.
T. Shen, J. Lu, J. Ding, Structure–activity relationship of stilbene derivatives as antioxidants, Bioorg. Med. Chem. Lett., 22(19), 2012, 6331–6335.
L. Pezza, H.R. Pezza, P. Calandra, Antioxidant activity of resveratrol and other stilbenes: a structure–activity relationship study, Food Chem., 131(3), 2012, 1041–1047.
L. López‑Maury, A. Martínez‑Ruiz, J. Bernal, The effect of hydroxyl and methoxy substitution on the antioxidant activity of stilbene derivatives, Antioxidants, 8(12), 2019, 600.
B.C. Akinwumi, K.-A.M. Bordun, H.D. Anderson, Biological activities of stilbenoids, Int. J. Mol. Sci., 19(3), 2018, 792.
P.C. Eklund, O.K. Långvik, J.P. Wärnå, T.O. Salmi, S.M. Willför, R.E. Sjöholm, Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans, Org. Biomol. Chem., 3(18), 2005, 3336–3347.
N. Mrduljaš, G. Krešić, T. Bilušić, Polyphenols: food sources and health benefits, in: Functional Food – Improve Health through Adequate Food, 2017.
W.Y. Jang, M.Y. Kim, J.Y. Cho, Antioxidant, anti‑inflammatory, anti‑menopausal, and anti‑cancer effects of lignans and their metabolites, Int. J. Mol. Sci., 23(24), 2022, 15482.
İ. Gülçin, Z. Huyut, M. Elmastaş, H.Y. Aboul‑Enein, Radical scavenging and antioxidant activity of tannic acid, Arab. J. Chem., 3(1), 2010, 43–53.
R.G. Andrade Jr, L.T. Dalvi, J.M. Silva Jr, G.K. Lopes, A. Alonso, M. Hermes‑Lima, The antioxidant effect of tannic acid on the in vitro copper‑mediated formation of free radicals, Arch. Biochem. Biophys., 437(1), 2005, 1–9.
T.T.T. Phan, Q.M. Pham, D. Duc, S.N. The, The antioxidative potential of procyanidin B1: DFT (density functional theory) and docking approaches, J. Mol. Model., 28(11), 2023, 356.
P. Schofield, D.M. Mbugua, A.N. Pell, Analysis of condensed tannins: a review, Anim. Feed Sci. Technol., 91(1–2), 2001, 21–40.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Chemical Technology and Metallurgy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.