EFFECT OF AL CONTENT ON THE MICROSTRUCTURE, MICROHARDNESS AND CORROSION RESISTANCE Of AlxCoCrFeNiMo0.5 HIGH-ENTROPY ALLOYS

Authors

  • Olga Samoilova South Ural State University
  • Svetlana Pratskova South Ural State University
  • Nataliya Shaburova South Ural State University
  • Ahmad Ostovari Moghaddam South Ural State University
  • Sergey Lezhnev Rudny Industrial University
  • Evgeniy Panin Karaganda Industrial University
  • Evgeny Trofimov South Ural State University

DOI:

https://doi.org/10.59957/jctm.v60.i6.2025.21

Keywords:

high entropy alloys, microstructure, microhardness, corrosion

Abstract

The microstructure, microhardness and corrosion resistance (in a 1 M NaCl solution) of as-cast AlxCoCrFeNiMo0.5 (x = 0, 0.25, 0.5) high-entropy alloys (HEAs) were studied. The as-cast samples exhibited a dendritic microstructure in which a (CrFeMo)-type molybdenum-rich σ-phase precipitated in the interdendritic space. It was determined that Al alloying increases the microhardness from 285 HV0.3 for CoCrFeNiMo0.5 HEA to 628 HV0.3 for Al0.5CoCrFeNiMo0.5 HEA. At the same time, aluminum has a negative effect on the corrosion resistance of the studied alloys, where an increase in Al concentration, increases the corrosion current by two orders of magnitude.

References

B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377, 2004, 213-218, https://doi.org/10.1016/j.msea.2003.10.257

J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 2004, 299-303, https://doi.org/10.1002/adem.200300567

Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature, 534, 2016, 227-230, https://doi.org/10.1038/nature17981

E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Mater., 188, 2020, 435-474, https://doi.org/10.1016/j.actamat.2019.12.015

M. Seifi, D. Li, Z. Yong, P.K. Liaw, J.J. Lewandowski, Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys, JOM, 67, 2015, 2288-2295, https://doi.org/10.1007/s11837-015-1563-9

M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater., 60, 2012, 5723-5734, https://doi.org/10.1016/j.actamat.2012.06.046

Y. Liu, S. Ma, M.C. Gao, C. Zhang, T. Zhang, H. Yang, Z. Wang, J. Qiao, Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions, Metall. Mater. Trans. A, 47, 2016, 3312-3321, https://doi.org/10.1007/s11661-016-3396-8

A.K. Kasar, K. Scalaro, P.L. Menezes, Tribological properties of high-entropy alloys under dry conditions for a wide temperature range - A review, Materials, 14, 2021, 5814, https://doi.org/10.3390/ma14195814

O. Samoilova, N. Shaburova, A. Ostovari Moghaddam, E. Trofimov, Al0.25CoCrFeNiSi0.6 high entropy alloy with high hardness and improved wear resistance, Materials Letters, 328, 2022, 133190, https://doi.org/10.1016/j.matlet.2022.133190

Y. Shi, B. Yang, P.K. Liaw, Corrosion-resistant high-entropy alloys: A review, Metals, 7, 2017, 43, https://doi.org/10.3390/met7020043

Y. Qiu, S. Thomas, M.A. Gibson, H.L. Fraser, N. Birbilis, Corrosion of high entropy alloys, NPJ Mater. Degrad., 1, 2017, 15, https://doi.org/10.1038/s41529-017-0009-y

Q.H. Li, T.M. Yue, Z.N. Guo, X. Lin, Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process, Metall. Mater. Trans. A, 44A, 2013, 1767-1778, https://doi.org/10.1007/s11661-012-1535-4

Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior, Corrosion Science, 119, 2017, 33-45, https://doi.org/10.1016/j.corsci.2017.02.019

Y.X. Zhuang, X.L. Zhang, X.Y. Gu, Effect of molybdenum on phases, microstructure and mechanical properties of Al0.5CoCrFeMoxNi high entropy alloys, Journal of Alloys and Compounds, 743, 2018, 514-522, https://doi.org/10.1016/j.jallcom.2018.02.003

S.-B. Shin, S.-J. Song, Y.-W. Shin, J.-G. Kim, B.-J. Park, Y.-C. Suh, Effect of molybdenum on the corrosion of low alloy steels in synthetic seawater, Materials Transactions, 57, 2016, 2116-2121, https://doi.org/10.2320/matertrans.M2016222

H.-Y. Ha, T.-H. Lee, J.-H. Bae, D.W. Chun, Molybdenum effects on pitting corrosion resistance of FeCrMnMoNC austenitic stainless steels, Metals, 8, 2018, 653, https://doi.org/10.3390/met8080653

Y.L. Chou, J.W. Yeh, H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corr. Sci., 52, 2010, 2571-2581, https://doi.org/10.1016/j.corsci.2010.04.004

A.A. Rodriguez, J.H. Tylczak, M.C. Gao, P.D. Jablonski, M. Detrois, M. Ziomek-Moroz, J.A. Hawk, Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions, Advances in Materials Science and Engineering, 2018, 2018, 3016304, https://doi.org/10.1155/2018/3016304

X. Wang, D. Mercier, Y. Danard, T. Rieger, L. Perrière, M. Laurent-Brocq, I. Guillot, V. Maurice, P. Marcus, Enhanced passivity of Cr-Fe-Co-Ni-Mo multi-component single-phase face-centred cubic alloys: design, production and corrosion behavior, Corrosion Science, 200, 2022, 110233, https://doi.org/10.1016/j.corsci.2022.110233

M. Löbel, T. Lindner, M. Grimm, L.-M. Rymer, T. Lampke, Influence of aluminum and molybdenum on the microstructure and corrosion behavior of thermally sprayed high-entropy alloy coatings, J Therm. Spray Tech., 31, 2022, 1366-1374, https://doi.org/10.1007/s11666-021-01297-6

C.-Y. Hsu, T.-S. Sheu, J.-W. Yeh, S.-K. Chen, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear, 268, 2010, 653-659, https://doi.org/10.1016/j.wear.2009.10.013

J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys, Materials Science and Engineering A, 527, 2010, 6975-6979, https://doi.org/10.1016/j.msea.2010.07.028

Y. Dong, Y. Lu, J. Kong, J. Znang, T. Li, Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys, Journal of Alloys and Compounds, 573, 2013, 96-101, https://doi.org/10.1016/j.jallcom.2013.03.253

S. Pratskova, O. Samoilova, E. Ageenko, N. Shaburova, A. Ostovari Moghaddam, E. Trofimov, Corrosion resistance of AlxCoCrFeNiM (M = Ti, V, Si, Mn, Cu) high entropy alloys in NaCl and H2SO4 solutions, Metals, 12, 2022, 352, https://doi.org/10.3390/met12020352

B. Straumal, I. Konyashin, WC-Based cemented carbides with high entropy alloyed binders: A review, Metals, 13, 2023, 171, https://doi.org/10.3390/met13010171

B. Straumal, N. Khrapova, A. Druzhinin, K. Tsoy, G. Davdian, V. Orlov, G. Gerstein, A. Straumal, Grain boundary wetting transition in the Mg-based ZEK 100 alloy, Crystals, 13, 2023, 1538, https://doi.org/10.3390/cryst13111538

R.A. Swalin, Thermodynamics of Solids, New York, Wiley, 1972.

A.F. Guillermet, The Fe-Mo (iron-molybdenum) system, Bulletin of Alloy Phase Diagrams, 3, 1982, 359-367, https://doi.org/10.1007/BF02869315

A. Jacob, E. Povoden-Karadeniz, E. Kozeschnik, Revised thermodynamic description of the Fe-Cr system based on an improved sublattice model of the σ phase, Calphad, 60, 2018, 16-28, https://doi.org/10.1016/j.calphad.2017.10.002

M. Venkatraman, J.P. Neumann, The Cr-Mo (chromium-molybdenum) system, Bulletin of Alloy Phase Diagrams, 8, 1987, 216-220, https://doi.org/10.1007/BF02874911

W.-R. Wang, W.-L. Wang, J.-W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, J. Alloys Compd., 589, 2014, 143-152, https://doi.org/10.1016/j.jallcom.2013.11.084

M. Ogura, T. Fukushima, R. Zeller, P.H. Dederichs, Structure of the high-entropy alloy AlxCrFeCoNi: fcc versus bcc, J. Alloys Compd., 715, 2017, 454-459, https://doi.org/10.1016/j.jallcom.2017.04.318

S. Abbaszadeh, A. Pakseresht, H. Omidvar, A. Shafiei, Investigation of the high-temperature oxidation behavior of the Al0.5CoCrFeNi high entropy alloy, Surf. Interf., 21, 2020, 100724, https://doi.org/10.1016/j.surfin.2020.100724

X.W. Qiu, Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy, J. Alloys Compd., 555, 2013, 246-249, https://doi.org/10.1016/j.jallcom.2012.12.071

O.V. Samoilova, S.E. Pratskova, N.A. Shaburova, E.A. Trofimov, Electrochemical behavior of Al0.25CoCrFeNiCu0.25Aux (x = 0; 0.1; 0.3) high-entropy alloys in an aqueous solution of sodium chloride, ChemChemTech, 67, 9, 2024, 27-34, https://doi.org/10.6060/ivkkt.20246709.6986

Downloads

Published

2025-11-02

Issue

Section

Articles