INFLUENCE OF DIAMOND BURNISHING PROCESS PARAMETERS ON STRAIN-INDUCED α’-MARTENSITE IN 304 CHROMIUM-NICKEL AUSTENITIC STAINLESS STEEL
DOI:
https://doi.org/10.59957/jctm.v61.i1.2026.22Keywords:
austenitic stainless steel, strain-induced a’-martensite, surface plastic deformation, diamond burnishingAbstract
When chromium-nickel austenitic stainless steels must satisfy a requirement for a high degree of strain-hardening, the nickel content is limited to 8 - 9 wt. %. The surface cold working of these steels causes the martensitic transformation γ → α′. Thus, the surface microhardness and residual compressive stresses increase due to the presence of the harder strain-induced a’-martensite phase. This article investigates the influence of the governing factors of diamond burnishing (DB) on the percentage content of the a’-martensite in the surface layer of AISI 304 steel using planned experiment, analysis of variance and regression analysis. A mathematical model of the percentage content of a’- martensite depending on the burnishing force, feed rate and burnishing velocity was created. Of the three governing factors, the most significant is feed rate, and the least important is burnishing force. Thermal effects have a greater impact on martensitic transformation γ → α′ compared to the mechanical effect. The percentage of martensite in the surface and subsurface layers is necessary information for determining the residual stresses by the X-ray method when studying the effect of DB on the surface integrity of austenitic stainless steels.
References
N.D. Rashkov, Heat treatment of steels, Sofia, Technika, 1977. (in Bulgarian)
A. Hedayati, A. Najafizadeh, A. Kermanpur, F. Forouzan, The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel, J Mater Process Technol, 210, 2010, 1017–1022.
B.R. Kumar, A.K. Singh, S. Das, D.K. Bhattacharya, Cold rolling texture in AISI 304 stainless steel, Mater Sci Eng A, 364, 2004, 132–139.
F. Borgioli, From austenitic stainless steel to expanded austenite - S phase: Formation, characteristics and properties of an elusive metastable phase, Metals, 20, 2020, 187.
Y. Hoshiyama, R. Mizobata, H. Miyake, Mechanical properties of austenitic stainless steel treated by active screen plasma nitriding, Surf Coat Technol, 307, 2016, 1041–1044.
P. Juijerm, I. Altenberger, Fatigue performance enhancement of steels using mechanical surface treatments, J Met Mater Miner, 17(1), 2007, 59–65.
P. Juijerm, I. Altenberger, Fatigue performance of high-temperature deep-rolled metallic materials, J Met Mater Miner, 17(2), 2007, 37–41.
Y. Lin, J. Lu, L. Wang, T. Xu, Q. Xue, Surface nanocrystalization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel, Acta Mater, 54, 2006, 5599–5605.
J.T. Maximov, G.V. Duncheva, A.P. Anchev, V.P. Dunchev, Y.B. Argirov, Improvement in fatigue strength of chromium–nickel austenitic stainless steels via diamond burnishing and subsequent low-temperature gas nitriding, Applied Sciences, 2024, 14, 1020.
G. Duncheva, J. Maximov, Cold working technologies for increasing the fatigue life of metal structural components with fastener holes - review and perspectives, Int J Adv Manuf Technol, 136, 2025, 2909-2943
H.J. Plaster, A tribute to Benjamin chew Tilghman, in: proceedings of the 5th international conference on shot peening, 1993, 2–9.
J.T. Maximov, G.V. Duncheva, A.P. Anchev, V.P. Dunchev, Y.B. Argirov, M.P. Nikolova, Effects of heat treatment and diamond burnishing on fatigue behaviour and corrosion resistance of AISI 304 austenitic stainless steel. Applied Sciences, 13, 2023, 2570.
M. Korzynski, Slide diamond burnishing. in: Nonconventional Finishing Technologies, Ed. M. Korzynski, Polish Scientific Publishers PWN, Warsaw, 2013, 9-33.
H. Roohi, H. Baseri, M. Mirnia, Evaluation of optimized surface characteristics in non-rotational sliding ball burnishing, Mater Manuf Proces, 39(16), 2024, 2299-2308.
J.T. Maximov, G.V. Duncheva, Finite Element Analysis and optimization of spherical motion burnishing of low-alloy steel, Proc IMechE, Part C: J Mech Eng Sci, 226(1), 2012, 161-176.
J.T. Maximov, T.V. Kuzmanov, G.V. Duncheva, N. Ganev, Spherical motion burnishing implemented on lathes, Int J Mach Tools Manuf, 49(11), 2009, 824-831.
H. Luo, J. Liu, Q. Zhong, Investigation of the burnishing process with PCD tool on non-ferrous metals, Int J Adv Manuf Technol, 25(5-6), 2005, 454-459.
G.V. Duncheva, J.T. Maximov, V.P. Dunchev et al. Single toroidal roller burnishing of 2024-T3 Al alloy implemented as mixed burnishing process, Int J Adv Manuf Technol, 111, 2020, 3559-3570.
J.T. Maximov, G.V. Duncheva, A.P. Anchev, V.P. Dunchev, Slide burnishing versus deep rolling – a comparative analysis, J Adv Manuf Technol, 110, 2020, 1923-1939.
I. Nikitin, I. Altenberger, Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600oC, Mater Sci Eng A, 465, 2007, 176–182.
J.T. Maximov, G.V. Duncheva, A.P. Anchev, V.P. Dunchev, Smoothing, deep or mixed diamond burnishing of low-alloy steel components – optimization procedures, J Adv Manuf Technol, 106, 2020, 1917-1929.
D. Tobola, B. Kania, Phase composition and stress state in the surface layers of burnished and gas nitrided Sverker 21 and Vanadis 6 tool steels, Surf Coat Technol, 353, 2018, 105-115.
J.T. Maximov, G.V. Duncheva, A.P. Anchev, V.P. Dunchev, Y.B. Argirov, Effect of diamond burnishing on fatigue behaviour of AISI 304 chromium-nickel austenitic stainless steel, Materials, 15(14), 2022, 4768.
M. Korzynski, K. Dudek, B. Kruczek, P. Kocurek, Equilibrium surface texture of valve stems and burnishing method to obtain it, Tribol Int, 124, 2018, 195–199.
D. Toboła, J. Morgiel, L. Maj, TEM analysis of surface layer of Ti-6Al-4V ELI alloy after slide burnishing and low-temperature gas nitriding, Appl Surf Sci, 515, 2020, 145942.
J.T. Maximov, A.P. Anchev, G.V. Duncheva et al., Impact of slide diamond burnishing additional parameters on fatigue behaviour of 2024-T3 Al alloy, Fatigue Fract Eng Mater Struct, 42(1), 2019, 363-373.
J.T. Maximov, A.P. Anchev, V.P. Dunchev et al., Effect of slide burnishing basic parameters on fatigue performance of 2024-T3 high-strength aluminium alloy, Fatigue Fract Eng Mater Struct, 40(11), 2017, 1893-1904.
G.V. Duncheva, J.T. Maximov, N. Ganev, G.V. Duncheva, K.F. Selimov, Enhancement of the wear resistance of CuAl9Fe4 sliding bearing bushings via diamond burnishing, Wear, 510-511, 2022, 204491.
G.V. Duncheva, J.T. Maximov, A.P. Anchev, V.P. Dunchev, Y.B. Argirov, Multi-objective optimization of internal diamond burnishing process, Mater Manuf Process, 37(4), 2022, 428-436.
G.V. Duncheva, J.T. Maximov, A.P. Anchev, V.P. Dunchev, Y.B. Argirov, Improvement in wear resistance performance of CuAl8Fe3 single-phase aluminum bronze via diamond burnishing, J Mater Eng Perform, 31, 2022, 2466-2478.
J.T. Maximov, G.V. Duncheva, A.P. Anchev, V.P. Dunchev, Explicit correlation between surface integrity and fatigue limit of surface cold worked chromium-nickel austenitic stainless steels, Int. J Adv Manuf Technol, 133, 2024, 6041-6058.
G. Varga, V. Ferencsik, Experimental examination of surface micro-hardness improvement ratio in burnishing of external cylindrical workpieces, Cutting & Tools in Technological System, 93, 2020, 114–121.
M. Okada, M. Shinya, H. Matsubara et al., Development and characterization of diamond tip burnishing with a rotary tool, J Mater ProcessTechnol, 244, 2017, 106–115.
J. Maximov, G. Duncheva, A. Anchev, V. Dunchev, K. Anastasov, Y. Argirov, Sustainable Diamond Burnishing of Chromium–Nickel Austenitic Stainless Steels: Effects on Surface Integrity and Fatigue Limit, Appl. Sci., 14, 2024, 9031
A. Skoczylas, K. Zaleski, J. Matuszal et al., Influence of slide burnishing parameters on the surface layer properties of stainless steel and mean positron lifetime, Materials, 15, 2022, 8131.
P.L. Mangonon, G. Thomas, The martensite phases in 304 stainless steel, Metall. Trans., 1, 1970, 1577–1586.
P.L. Mangonon, G. Thomas, Structure and properties of thermal-mechanically treated 304 stainless steel, Met. Mater. Trans. A, 1, 1970, 1587–1594.
Diffrac. DQUANT, Quantitative Analysis from Calibration to Reporting; Bruker AXS GmbH, Karlsrue, Germany, 2018.
I.N. Vuchkov, I.I. Vuchkov, QStatLab Professional, version 6.1.1.3, Statistical Quality Control Software, User’s Manual, QStatLab, Sofia, Bulgaria, 2009.
J.T. Maximov, G.V. Duncheva, A.P. Anchev, N. Ganev, V.P. Dunchev, Effect of cyclic hardening on fatigue performance of slide burnishing components made of low-alloy medium carbon steel, Fatigue Fract Eng Mater Struct, 42(6), 2019, 1414-1425.
V.P. Kuznetsov, I.Y. Smolin, A.I. Dmitriev, S.Y. Tarasov, V.G. Gorgots, Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel, Surf Coat Techol, 285, 2016, 171-178.
J.T. Maximov, G.V. Duncheva, A.P. Anchev, N. Ganev, I.M. Amudjev, Effect of slide burnishing method on the surface integrity of AISI 316Ti chromium-nickel steel, J Braz Soc Mech Sci Eng, 2018, 40, 194.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Chemical Technology and Metallurgy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.