STUDY OF THE INFLUENCE OF THE PARTIAL REPLACING OF FELDSPARS WITH BIOGENIC HYDROXYAPATITE IN DENTAL TRANSPARENT GLAZE

Authors

  • Albena Yoleva University of Chemical Technology and Metallurgy
  • Adriana Batsova University of Chemical Technologies and Metallurgy

DOI:

https://doi.org/10.59957/jctm.v61.i1.2026.12

Keywords:

Keywords: multicomponent glasses, dental glaze, feldspar, hydroxiapatite, fluorescence

Abstract

Four glass compositions for dental glaze on zirconium ceramics were melted at temperature at 1200 oC in corundum crucible with hold for 2 h at maximum temperature and rapidly cooled in water. The following raw materials for melting of the glasses were used: sodium feldspar, potassium feldspar, sodium nitrate, barium carbonate, lithium carbonate, boric acid and biogenic hydroxyapatite (BHA). The glass composition 1 does not contain hydroxyapatite. The other compositions (2, 3 and 4) contain 10, 20 and 30 wt. % BHA, respectively, which partially replaces sodium and potassium feldspars. The biogenic hydroxyapatite powder (BHA) was synthesized by us from Black Sea Rapana venosa shells and monocalcium phosphate monohydrate Ca(H2PO4 )2.H2O by solid-state synthesis at 1180 oC. With the present study by methods of XRD, FT-IR-ATR and Fluorescence analysis, we prove that 10 mass % BHA  can participate in the composition of glass for dental glaze on zirconium ceramics in the place of feldspars, which would increase its bioactive properties and optical properties. 

References

R. Izzetti, S. Gennai, M. Nisi, F. Gulia, M. Miceli, M.R. Giuca, Clinical Applications of Nano-Hydroxyapatite in Dentistry, Appl. Sci. 12, 2022, 10762.

S. Balhuc, R.Campian, A. Labunet, M. Negucioiu, S. Buduru, A. Kui, Dental Applications of Systems Based on Hydroxyapatite Nanoparticles - An Evidence-Based Update, Crystals 11, 2021, 674.

D. Dionysopoulos, The Role of Bioactive Glasses in Dental Erosion - A Narrative Review. Compounds 4, 2024, 442–452.

H. E. Skallevold, D. Rokaya, Z. Khurshid, M. S. Zafar, Bioactive Glass Applications in Dentistry, Int J Mol Sci 20, 2019, 5960.

Britina, M. Yuwanati, S. Chitra, Investigating the effect of bioactive glasses on enamel remineralization through morphological and elemental analysis, Biomed Biotechnol Res. J, 7, 2023181-6.

D. Bellucci, A. Sola, A. Anesi, R. Salvatori, L. Chiarini, V. Cannillo, D. Bellucci, Bioactive glass/hydroxyapatite composites: Mechanical properties and biological evaluation. Mater. Sci. Eng. C., 51, 2015, 196–205.

J. R. Jones, Review of bioactive glass: from Hench to hybrids Acta. Biomater, 9, 2013, 1, 4457– 4486.

G. Göller, H. Demirkiran, F. N. E. Oktar, Demirkesen Processing and characterization of bioglass reinforced hydroxyapatite composites. Ceram. Int. 29, 2003, 721–724.

F. N. Oktar, G. Göller, Sintering effects on mechanical properties of glass-reinforced hydroxyapatite composites. Ceram. Int. 28, 2002, 617–621.

C. Soundrapandian, S. Bharati, D. Basu, S. Datta, Studies on novel bioactive glasses and bioactive glass–nano-Hap composites suitable for coating on metallic implants. Ceram. Int. 37, 2011, 759–769.

J. M. Gomez-Vega, E. Saiz, A.P. Tomsia, G. W. Marshall, Glass–hydroxyapatite coatings on titanium-based implants, Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing, Biomaterials 21, 2000, 2, 105-111.

Catalgol, Z. Sintering effect on borosilicate glass-bovine hydroxyapatite composites. J. Aust. Ceram. Soc. , 55, 2019, 4, 1075–1079.

M. Luginina, D. Angioni, S. Montinaro, R. Orrù, G. Cao, R. Sergi, D. Bellucci, V., Cannillo, Hydroxyapatite/bioactive glass functionally graded materials (FGM) for bone tissue engineering. J. Eur. Ceram. Soc. 40, 2020, 13, 4623-4634.

O. M. Goudouri, E. Kontonasaki, X. Chatzistavrou, L. Papadopoulou, P. Koidis, K. M. Paraskevopoulos, Investigation of the bioactivity of dental ceramic/bioactive glass composites prepared by the sol gel route. Key Eng. Mater. , 396-398, 2009, 119–122.

D. Angioni, R. Orrù, G.Cao, S. Garroni, D. Bellucci, V. Cannillo, Recent advances on innovative bioactive glass-hydroxyapatite composites for bone tissue applications: Processing, mechanical properties, and biological performance, J. Eur. Ceram. Soc., 43, 2023, 7688–7696.

, S. Gali, Mica glass ceramics for dental restorations. J. Mater. Technol. , 34, 2019, 2–11.

B-C. Yang., J.-W., C.-P. Lee, J.-H. Chern Lin, Physical/Chemical Properties and Resorption Behavior of a Newly Developed Ca/P/S-Based Bone Substitute Material. Materials 13, 2020, 3458.

Al-Wafi, R.; Eldera, S. S.; Hamzawy, E. M. A. Characterization and in vitro bioactivity study of a new glass ceramic from mica/apatite glass mixtures. J. Mater. Res. Technol., 9, 4, 2020, 7558–7569.

F.M., Stábile, C. Volzone, Effects of incorporating natural minerals on production and bioactivity of bioactive glass ceramics. Ceram. - Silik. 60, 3, 2016, 188-194.

D. Spitzer, J.J. Bosch Ten, The total luminescence of bovine and human dental enamel. Calc. Tis Res. 20, 1976, 201–208.

A. Yoleva, T. Tasheva, S. Djambazov, A. Batsova, Development of multicomponent glasses for application as a glazing layer on dental zirconia. Int. J. Appl. Glass. Sci. 2024, 1–8.

A. Yoleva, , I. Mihailova, S. Djambazov, Solid state synthesis of hydroxyapatite from Black Sea Rapana venosa shells. J. Chem. Technol. Metall. 58, 2, 2023, 385-393.

J. Mateeva, A. Yoleva, S. Djambazov, Phase study of Rapana venosa shells from the Black Sea. J. Chem. Technol. Metall., 1, 58, 2023, 38-43.

Downloads

Published

2026-01-03

Issue

Section

Articles