CRYSTALLOGRAPHIC AND ELECTRICAL PARAMETERS OF TiO2 THIN FILMS DEPOSITED ON Al SUBSTRATES
DOI:
https://doi.org/10.59957/jctm.v61.i1.2026.17Keywords:
Al substrates, TiO2 coatings, structure, electrical propertiesAbstract
In this study, titanium oxide thin films were synthesized on Al substrates by the direct current reactive magnetron sputtering technique. During the experiments, a pure Ti interlayer on aluminum substrates was deposited. Part of the formed samples were heated to a temperature of 180°C for 120 min. The TiO2 thin films were deposited on heated and unheated Al substrates with Ti interlayer. Important crystallographic parameters of samples, like phase composition, formation of preferred crystallographic orientation, and lattice parameters were studied using X-ray diffraction analysis. Other surface characteristics, such as surface roughness, and distribution of the measured heights were determined using Atomic Force Microscopy. Electrical impedance spectroscopy was used to determine the electrical
characteristics of specimens. The results obtained for the electrical properties of the modified surfaces were discussed in relation to the investigated structure of the samples. The results showed that the applied preliminary heating of the deposited Ti interlayer on the Al substrate significantly influenced the electrical impedance of the Ti/TiO2 coating.
References
I. Ilievska, V. Ivanova, D. Dechev, N. Ivanov, M. Ormanova, M. Nikolova, Y. Handzhiyski, A. Andreeva, S. Valkov, M. Apostolova, Influence of Thickness on the Structure and Biological Response of Cu-O Coatings Deposited on cpTi. Coatings, 14, 2024, 455.
W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, Impedance Characterization and Modeling of Electrodes for Biomedical Applications, IEEE transactions on biomedical engineering, 52, 7, 2005.
M. Mirsafaei, P. Jensen, M. Ahmadpour, H. Lakhotiya, J. Hansen, B. Julsgaard, H. Rubahn, R. Lazzari, N. Witkowski, P. Balling, M. Madsen, Sputter-deposited titanium oxide layers as efficient electron selective contacts in organic photovoltaic devices, ACS Appl. Energy Mater., 3, 2020, 253−259.
M. Kaelin , D. Rudmann, A.N Tiwari, Low-cost processing of CIGS thin film solar cells, Solar Energy 77, 2004, 749–756.
M. Kamalisarvestani, R. Saidur, S. Mekhilef on smart windows, Renewable and sustainable energy reviews 26, 2013, 353–364. , F.S. Javadi, Performance, materials and coating technologies of thermochromic thin films
K. Yu, Titanium dioxide nanoparticles in sunscreens: Properties, current regulations, and potential effects on human and environmental wellbeing, Journal of student science and technology 10, 1, 2017, 72-80.
J. Budida, K. Srinivasan, Review of thin film deposition and techniques, Materials today: Proceedings 92, 2023, 1030–1033.
M. Ormanova, D. Dechev, N. Ivanov, G. Mihai, M. Gospodinov, S. Valkov, M. Enachescu, Synthesis and characterization of Ti-Ta-shape memory surface alloys formed by the electron-beam additive technique, Coatings, 12, 5, 2022, 678.
M. Ormanova, G. Kotlarski, R. Bezdushnyi, N. Ivanov, D. Dechev, S.Valkov, Structure of Ti-Ta alloys fabricated by electron-beam surface alloying, Comptes rendus de l'Academie bulgare des Sciences, 75, 9, 2022, 2367-5535.
R. Garg, S. Gonuguntla, S. Sk, M. Saqlain Iqbal, A. O. Dada, U. Pal, M. Ahmadipour , Sputtering thin films: Materials, applications, challenges and future directions, Advances in colloid and interface science 330, 2024, 103203.
M. Ormanova, G. Kotlarski, D. Dechev, N. Ivanov, B. Stoyanov, S. Valkov, Duplex surface modification of M2 high-speed steel, Coatings, 14, 2024, 798.
S. Valkov, G. Kotlarski, S. Parshorov, M. Ormanova, B. Stoyanov, F. Padikova, I. Parshorov, Effect of electron beam surface modification on the plasticity of inconel alloy 625., Coatings, 14, 3, 2024, 268.
G. Xie, H. Bai, G. Miao, G. Feng, J. Yang, Y. He, X. Li, Y. Li, The applications of ultra-thin nanofilm for aerospace advanced manufacturing technology, Nanomaterials, 11, 2021, 3282.
H. Barshilia, Surface modification technologies for aerospace and engineering applications: Current trends, challenges and future prospects, transactions of the Indian National Academy of engineering, 6, 2021, 173–188.
D. Gölden, G. Ickes, H. Hagedorn, S. Runkel, PVD solutions for automotive thin film applications, Vakuum in forschung und praxis, 32, 2020, 20-24.
A. Panca, J. Panidi, H. Faber, S. Stathopoulos, T. Anthopoulos, T. Prodromakis, Flexible oxide thin film transistors, memristors and their integration, Adv. Funct. Mater. 33, 2023, 2213762.
S. Ge, D. Sang, L. Zou, Y. Yao, C. Zhou, H. Fu, H. Xi, J. Fan, L. Meng, C. Wang, A review on the progress of optoelectronic devices based on TiO2 thin films and nanomaterials, Nanomaterials 13, 2023, 1141.
E. Carneiro, N.M.G Parreira., T. Vuchkov, A. Cavaleiro, J. Ferreira, M. Andritschky, S. Carvalho, Cr-based sputtered decorative coatings for automotive industry, Materials, 14, 2021, 5527.
J. Musila,b, P. Barocha, J. Vlceka, K.H. Namc, J.G. Han, Reactive magnetron sputtering of thin films: present status and trends, Thin solid films 475, 2005, 208– 218.
Y. Deng, W. Chen, B. Li, C. Wang, T. Kuang, Y. Li, Physical vapor deposition technology for coated cutting tools: A review, Ceramics International 46, 2020, 18373–18390.
J. T. Gudmundsson, Physics and technology of magnetron sputtering discharges, Plasma Sources Sci. Technol. 29, 2020, 113001, 53.
S. M. Rossnagel, Magnetron sputtering, J. Vac. Sci. Technol. A 38, 2020, 060805.
M. Ormanova, G. Kotlarski, S. Valkov, D. Dechev, N. Ivanov, P. Petrov, Formation and characterization of CuO coatings deposited by reactive magnetron sputtering, Journal of physics: conference series, 2240, 2022, 012010.
A. Baptista, F.J.G. Silva, J. Porteiro, J.L. Míguez, G. Pinto, L. Fernandes, On the physical vapour deposition (PVD): evolution of magnetron sputtering processes for industrial applications, Procedia Manufacturing 17, 2018, 746–757.
H. Liang, J. Xu, D. Zhou, X. Sun, S. Chu, Y. Bai, Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering, Ceramics International 42, 2016, 2642–2647.
H. Huang, L. Jiang, Y. Yao, Z. Zhang, Z. Wang, R. Qi, Controlling film thickness distribution by magnetron sputtering with rotation and revolution, Coatings, 11, 2021, 599.
A. J. Haider, Z. N. Jameel, I. H.M. Al-Hussaini, Review on: titanium dioxide applications, energy procedia 00, 2017, 000–000.
D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, J. Domaradzki, Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process, Materials Science-Poland, 33(3), 2015, 660-668.
N. Baram, D. Starosvetsky, J. Starosvetsky, M. Epshtein, R. Armon, Y. Ein-Eli, Electrochemical impedance spectroscopy of porous TiO2 for photocatalytic applications, Meet. Abstr. MA 02, 2009, 1164.
A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, Electrical properties of TiO2 thin films, Journal of non-crystalline solids 354, 2008, 4944–4947.
Y. Song, Y. Kang, W. Ma, H. Li, In situ preparation of an anatase/rutile-TiO2/Ti3C2Tx hybrid electrode for durable sodium ion batteries, RSC Adv., 12, 2022, 12219.
F. Shahvaranfard, N. Li, S. Hosseinpour, S. Hejazi, K. Zhang, M. Altomare, P. Schmuki, C. J. Brabec, Comparison of the sputtered TiO2 anatase and rutile thin films as electron transporting layers in perovskite solar cells, Nano Select 3, 2022, 990–997.
S. Ge, D. Sang, L. Zou, Y. Yao, C. Zhou, H. Fu, H. Xi 3, J. Fan, L. Meng, C. Wang, A review on the progress of optoelectronic devices based on tio2 thin films and nanomaterials, Nanomaterials, 13, 2023, 1141.
G. Illarionov, S. Morozova, V. Chrishtop, M. Einarsrud, M. Morozov, Memristive TiO2: synthesis, technologies, and applications, Front. Chem. 8, 2020, 724.
D. Rathee, S. K. Arya, M. Kumar, Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties, Front. Optoelectron. China 4, 4, 2011, 349–358.
E. V Niño, L. Bertel, D. A. Miranda, Effects of thermal treatment on the electrical behavior of titanium dioxide thin films, Emergent Materials 7, 2024, 2025–2034.
R. P. Verma, M. K. Lila, A short review on aluminium alloys and welding in structural applications, Materials today: proceedings 46, 2021, 10687–10691.
E. Georgantzia, M. Gkantou, G. S. Kamaris, Aluminium alloys as structural material: A review of research, Engineering structures 227, 2021, 111372.
Z. Matej, R. Kuzel, L. Nichtova, XRD total pattern fitting applied to study of microstructure of TiO2 films, Powder Diffr., Vol. 25, No. 2, 2010, 125-131.
S. Sadia, K. Shishir, S. Ahmed, A. Aidid, M. Islam, M. Rana, Sh. Al-Reza, A. Alam, Crystallographic biography on nanocrystalline phase of polymorphs titanium dioxide (TiO2): A perspective static review, South African Journal of chemical engineering, 50, 2024, 51-64, 1026-9185.
A. Li, Zh. Wang, H, Yin, Sh. Wang, P. Yan, B. Huang, X. Wang, R. Li, X. Zong, H. Han, C. Li, Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting, Chem. Sci., 7, 2016, 6076–6082.
H. Magar, R. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications, Applications. Sensors 21, 2021, 6578.
G. Kotlarski, N. Ivanov, D. Dechev, S. Valkov, V. Mateev, I. Marinova, Structure and impedance of TiN coated 304L SS substrates, Journal of Physics: conference series, 2710, 2024, 012004.
G. Kotlarski, N. Ivanov, D. Dechev, M. Ormanova, S. Valkov, V. Mateev, I. Marinova, Influence of magnetron sputtered TiN and VN coatings on the electrical impedance of aluminium electrodes, Comptes rendus de l'Academie bulgare des Sciences, 76, 9, 2023, 1335-1342.
M. Sekhar, P. Kondaiah, S.V. Chandra, G. Rao, S. Uthanna, Effect of substrate bias voltage on the structure, electric and dielectric properties of TiO2 thin films by DC magnetron sputtering, Applied surface science 258, 2011, 1789– 1796.
S. Dutta, Leeladhar, A. Pandey, O. P. Thakur, R. Pal, Electrical properties of ultrathin titanium dioxide films on silicon, Journal of vacuum science & technology A 33, 2015, 021507.
I. Iordanova, P. Kelly, M. Burova, A. Andreeva, B. Stefanova, Influence of thickness on the crystallography and surface topography of TiN nano-films deposited by reactive DC and pulsed magnetron sputtering, Thin Solid Films, 2012, 520, 5333-5339.
I. Guzman-Flores, E. Granda-Gurierrez, C. Cruz-Gonzalez, H. Hernandez-Garcia, J. Diaz-Guillen, L. Flores-Gonzalez, R. Praga-Alejo, D. Martinez-Delgado, Enhancing the mechanical properties of a 6061-aluminum alloy by heat treatment from the perspective of taguchi design-of-experiments. Applied sciences 14, 2024, 5407.
N. Kumar, Dhruthi; G. Pramod, P. Samrat, M. Sadashiva, A Critical review on heat treatment of aluminum alloys. Materials today: proceedings 58, 2022, 71-79.
F. Muniz, M. Miranda, C. dos Santos, J. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction, Acta Crystallographica Section A, Foundations and Advances, 2016, 72, 385-390.
Y. Han, S. Li, X. Li, J. Ma, J. Ping, Y. Sun, Study on process parameters of magnetron sputtering titanium, ACS Omega 2024, 9, 14551−14557.
F.M. Mwema, J.M. Wambua,T. Jen, E.T. Akinlabi, Influence of sputtering dc sputtering power on the surface, JOM, 2025, 77, 2.
A. Jafari, Z. Ghoranneviss, A. S. Elahi, M. Ghoranneviss, N. Fasihi Yazdi, A. Rezaei Effects of annealing on tin thin film growth by DC magnetron sputtering.
Y. Wang, K. H. Rahman, C. Wu, K. Chen, A review on the pathways of the improved structural characteristics and photocatalytic performance of titanium dioxide (TiO2) thin films fabricated by the magnetron-sputtering technique, Catalysts, 2020, 10, 598.
J.A., Venables, et al., Nucleation and Growth of Thin Films, Rep. Prog. Phys. 47, 1984, 399.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Journal of Chemical Technology and Metallurgy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.