INVESTIGATION OF LASER PRODUCED NOBLE METAL-SEMICONDUCTOR NANOSTRUCTURES
DOI:
https://doi.org/10.59957/jctm.v61.i1.2026.15Keywords:
nanostructures, noble metals, ZnO, nanocomposites, pulsed laser deposition, laser annealing, SPR, PLAbstract
The ZnO/noble metal (both individually - Ag or Pd and in combination) nanocomposites are prepared by laser synthesis methods at atmospheric pressure in air. The formation of complex porous nanostructures is carried out by picosecond pulsed laser deposition at room temperature. The effect of post-deposition nanosecond laser annealing on the morphology and optical properties of the nanostructures is studied. The contribution of laser modifications to the change of a surface plasmon resonance (SPR) absorption band, and respectively, to the near-band-edge (NBE) and deep-level photoluminescence emission (DL), is investigated. The resonance absorption properties are obtained
for Ag/ZnO nanostructures before and after the laser annealing. While the SPR absorption band appears for mono- and bimetallic samples with palladium after the laser annealing. The plasmon resonance absorption contributes to the enhancement of photoluminescence band-edge UV emission of all samples and suppression of the strong Vis DL emission of monometallic noble metal/ZnO nanocomposites after the annealing. The low level of the DLE emission is observed before the annealing of the bimetallic sample Ag-Pd/ZnO, with annealing slightly affecting it. This sample demonstrates significantly smaller nanoparticles (NPs), as well as a narrower size distribution in comparison to monometallic noble metal/ZnO nanocomposites.
References
Romana Zahoor; Abdul Jalil; Syed Zafar Ilyas; Sarfraz Ahmed; Ather Hassan, Optoelectronic and solar cell applications of ZnO nanostructures, Results in Surfaces and Interfaces, 2, 2021 100003. https://doi.org/10.1016/j.rsurfi.2021.100003
M.E. Koleva, N.N. Nedyalkov, N. Fukata, W. Jevasuwan, S. Amoruso, T. Koutzarova, G. V. Avdeev, B. Georgieva, D. Karashanova, Laser assisted approach for synthesis of plasmonic Ag/ZnO nanostructures, Superlattices and Microstructures, 109, 2017, 886-896. https://doi.org/10.1016/j.spmi.2017.06.007
S.T. Kochuveedu, Y.H. Jang, D.H. Kim., A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications, Chem Soc Rev. 42, 21, 2013, 8467-93. https://doi.org/10.1039/C3CS60043B
T. Wenzel, J. Bosbach, F. Stietz and F. Trager, In situ determination of the shape of supported silver clusters during growth, Surf. Sci., 432, 3, 1999 257-264. https://doi.org/10.1016/S0039-6028(99)00546-4
C. Charton and M. Fahland, Optical properties of thin Ag films deposited by magnetron sputtering, Surf. Coat. Technol., 174–175, 2003, 181-186. https://doi.org/10.1016/S0257-8972(03)00700-X
W. Cai, H. Hofmeister, T. Rainer and W. Chen, Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica, J. Nanopart. Res., 3, 2001, 441-451. https://doi.org/10.1023/A:1012537817570
R. Jin, Y.-W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science, 294(5548), 2001. 1901-3. https://doi.org/10.1126/science.1066541
L. Ström, , H. Ström, P.-A. Carlsson, , M. Skoglundh, , H. Härelind, Catalytically Active Pd–Ag Alloy Nanoparticles Synthesized in Microemulsion Template. Langmuir, 34, 33, 2018, 9754–9761. https://doi.org/10.1021/acs.langmuir.8b01838
S.Kunwar, , P. Pandey, S. Pandit, M. Sui, , J. Lee, Improved Morphological and Localized Surface Plasmon Resonance (LSPR) Properties of Fully Alloyed Bimetallic AgPt and Monometallic Pt NPs Via the One-Step Solid-State Dewetting (SSD) of the Ag/Pt Bilayers, Nanoscale Res. Lett., 14, 2019, 332. https://doi.org/10.1186/s11671-019-3170-0
Elias E. Elemike, Damian C. Onwudiwe, Lei Wei, Lou Chaogang, Zhao Zhiwei, Noble metal –semiconductor nanocomposites for optical, energy and electronics applications, Solar Energy Materials and Solar Cells, 201, 2019, 110106. https://doi.org/10.1016/j.solmat.2019.110106
M.E. Koleva, A.Og. Dikovska, N.N. Nedyalkov, P.A., Atanasov, I.A. Bliznakova, Enhancement of ZnO, photoluminescence by laser nanostructuring of Ag, underlayer, Applied Surface Science, 258, 23, 2012, 9181-9185. https://doi.org/10.1016/j.apsusc.2012.01.052
M. E. Koleva; N. N. Nedyalkov; Ru Nikov; Ro Nikov; G. Atanasova; D. Karashanova; V. I. Nuzhdin; V. F. Valeev; A. L. Stepanov; A. M. Rogov, Fabrication of Ag/ZnO nanostructures for SERS applications, Applied Surface Science, 508, 2020, 145227. https://doi.org/10.1016/j.apsusc.2019.145227
Mihaela Koleva, Anna Dikovska, Nikolay Nedyalkov, Tsanislava Genova Genoveva Atanasova, Laser synthesis and processing of composite nanostructures, Journal of Chemical Technology and Metallurgy, 59, 4, 2024, 831-839. https://doi.org/10.59957/jctm.v59.i4.2024.11
R. Radičić, , D. Maletić, D. Blažeka, J. Car, N. Krstulović, Synthesis of Silver, Gold, and Platinum Doped Zinc Oxide Nanoparticles by Pulsed Laser Ablation in Water, Nanomaterials, 12, 2022, 3484. https://doi.org/10.3390/nano12193484
Maksymilian Włodarski, Michał P. Nowak, Matti Putkonen, Piotr Nyga, Małgorzata Norek, Surface Modification of ZnO Nanotubes by Ag and Au Coatings of Variable Thickness: Systematic Analysis of the Factors Leading to UV Light Emission Enhancement, ACS Omega, 9, 1, 2023, 1670-1682. https://doi.org/10.1021/acsomega.3c08253
X. Wang, Q. Ye, LH. Bai, Xi Su, Ting-Ting Wang, Tao-Wei Peng, Xiao-Qi Zhai, Yi Huo, Hao Wu, Chang Liu, Yu-Yu Bu, Xiao-Hua Ma, Yue Hao & Jin-Ping Ao, Enhanced UV Emission from ZnO on Silver Nanoparticle Arrays by the Surface Plasmon Resonance Effect, Nanoscale Res. Lett., 16, 2021, 8. https://doi.org/10.1186/s11671-020-03470-2
X.S. Shen, G.Z. Wang, X. Hong, W. Zhu, Shape-Controlled Synthesis of Palladium Nanoparticles and Their SPR/SERS Properties, Chin. J. Chem. Phys., 22, 4, 2009, 440-446. https://doi.org/10.1088/1674-0068/22/04/440-446
Benjamin Kaufmann, Thomas Billovits, Peter Supancic, Observation of an electrical breakdown at ZnO Schottky contacts in varistors, Journal of the European Ceramic Society, 41, 3, 2021, 1969-1974. https://doi.org/10.1016/j.jeurceramsoc.2020.10.052
D. Dastan, N. Chaure, M. Kartha, Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation, J. Mater. Sci. Mater. Electron., 28, 2017, 7784–7796. https://doi.org/10.1007/s10854-017-6474-9
D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel, Appl. Phys. A, 123, 2017, 699-711. https://doi.org/10.1007/s00339-017-1309-3
S. Youssef, P. Combette, J. Podlecki, R.A. Asmar, A. Foucaran, Structural and optical characterization of ZnO thin films deposited by reactive rf Magnetron sputtering, Cryst. Growth Des., 9 (2009), 1088-1094. https://doi.org/10.1021/cg800905e
R. B. Jiang, B. X. Li, C. H. Fang and J. F. Wang, Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications, Adv. Mater., 26, 2014, 5274–5309. https://doi.org/10.1002/adma.201400203
P. Sudhagar, Anitha Devadoss, Taeseup Song, P. Lakshmipathiraj, Hyungkyu Han, Volodymyr V. Lysak, C. Terashima, Kazuya Nakata, A. Fujishima, Ungyu Paik and Yong Soo Kang, Enhanced photocatalytic performance at a Au/N–TiO2 hollow nanowire array by a combination of light scattering and reduced recombination, Phys. Chem. Chem. Phys., 16, 2014, 17748-17755. http://dx.doi.org/10.1039/C4CP02009J
Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, Z.Y. Li, Size-Dependence of Surface Plasmon Resonance and Oxidation for Pd Nanocubes Synthesized via a Seed Etching Process, Nano Lett. 5 (7) (2005) 1237-1242. https://doi.org/10.1021/nl0508826
Seung Jun Lee; Jung, Jin Hyeon, Ravindranadh Koutavarapu, Seung Heon Lee, Malathi Arumugam, Ju Hyun Kim, Myong Yong Choi, ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation, Appl. Surf. Sci., 496, 2019, 143665. https://doi.org/10.1016/j.apsusc.2019.143665
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Journal of Chemical Technology and Metallurgy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.