GELATINE - GLASS MICROBUBBLES HYDROCOLLOID AS POTENTIAL MEDICAL PHANTOM MATERIAL IN COMPUTED TOMOGRAPHY

Authors

  • Ginka Exner Plovdiv university Paisii Hilendarski
  • Veselina Georgieva Plovdiv University Paisii Hilendarski and UMBAL St. Georgi
  • Yordan Marinov Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences
  • Georgi Tankovski Plovdiv University Paisii Hilendarski
  • Nikoleta Traikova UMBAL St. Georgi

DOI:

https://doi.org/10.59957/jctm.v61.i1.2026.3

Keywords:

Medical phantoms, lung and adipose tissues, gelatine hydrocolloids, tissue mimicking materials, computed tomography, glass microbubbles

Abstract

In the present study, gelatine - based hydrocolloids with glass microbubbles were designed and investigated as potential tissue mimicking materials for adipose and lung tissues in Computed tomography. Hydrocolloids contained 0.04 or 0.08 g mL-1 gelatine and glass microbubbles in the range 0.04 - 0.28 g.mL-1. Hounsfield units were derived for voltages in the range 70 - 120 kVp. All obtained values were negative with limits from about - 10 HU to about -445 HU. Mechanical performance was also investigated, giving comparatively high Young’s modulus up to about 1.2 MPa. Hounsfield units’ further decrease might be possible by 3D printing of the hydrocolloids, when printed with a speed from 60 to 90 mL h-1, at a minimum temperature of 40 oC. Printability is limited up to 0.20 g mL-1 glass
microbubbles concentration. 

Author Biography

Veselina Georgieva, Plovdiv University Paisii Hilendarski and UMBAL St. Georgi

The author has two affiliations

Plovdiv University Paisii Hilendarski

and UMBAL St. Georgi

References

C. K. McGarry, L. J. Grattan, A. M. Ivory, F. Leek, G. P. Liney, Y. Liu, P. Miloro, R. Rai, A. P. Robinson, A. J. Shih, B. Zeqiri. C. H. Clark, Tissue mimicking materials for imaging and therapy phantoms: a review, Phys. Med. Biol., 65, 2020, 23TR01, doi: 10.1088/1361-6560/abbd17

V. Filippou, C. Tsoumpas, 2018, Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and Ultrasound, Med. Phys., 45 (9), e740 e760, doi: 10.1002/mp.13058

E. Lennie, C. Tsoumpas, S. Sourbron, 2021, Multimodal phantoms for clinical PET/MRI, EJNMMI Physics, 8, 2021, 62, doi: 10.1186/s40658-021-00408-0

V. Georgieva, G. Tankovski, N. Traikova, G. Exner (2025) J. Phys. Conf. Ser., 2952012014, doi:10.1088/1742-6596/2952/1/012014

G. Tankovski, V. Georgieva, N. Traikova, G. Exner (2025) J. Phys. Conf. Ser. 2952012015

S. L. Vieira, T. Z. Pavan, J. E. Junior, A. A. Carneiro, Paraffin-Gel Tissue-Mimicking Material for Ultrasound-Guided Needle Biopsy Phantom. Ultrasound Med. Biol., 39, 2013, 2477–2484, doi: 10.1016/j.ultrasmedbio.2013.06.008

K. Funamoto, O. Yamashita, T. Hayase, Poly(vinyl alcohol) gel ultrasound phantom with durability and visibility of internal flow. J. Med. Ultrason., 2015, 42, 17–23, doi: 10.1007/s10396-014-0560-x

E. Maneas, W. Xia, D.I. Nikitichev, B. Daher, M. Manimaran, R.Y.J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, A. E. Desjardins, Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds. Phys. Med. Biol. 2018, 63, 015033, doi: 10.1088/1361-6560/aa9e2c

Z. G. Portakal, S. Shermer, C. Jenkins, E. Spezi, T. Perrett, N. Tuncel, J. Phillips, Design and Characterization of tissue-mimicking gel phantoms for diffusion kurtosis imaging, Med. Phys, 45(6), 2018, 2476-2485 doi:10.1002/mp.12907

Y. H. Kao, O. S. Luddington, S. R. Culleton, R. J. Francis, J. A. Boucek, A Gelatin liver phantom of suspended 90Y resin microspheres to simulate the physiologic microsphere biodistribution of a postradioembolization liver, J. Nucl. Med. Techn., 42(4), 2014, 265-268, doi:10.2967/jnmt.114.145292

E. Dahal, A. Badal, A. Zidan, A. Alayoubi, T. Hagio, S. Glick, A. Badano, B. Ghammraoui, Stable gelatin-based phantom materials with tunable x-ray attenuation properties and 3D printability for x-ray imaging, Phys Med Biol, 63(9), 09NT01, doi:10.1088/1361-6560/aabd1f

P. Homolka, A. Gahleitner, M. Prokop, R. Nowotny, Phys. Med. Biol., 47, 2002, 2907–2916

E. Amidi, G. Yang, K. M. S. Uddin, R. Wahidi, Q. Zhu, Low-cost ultrasound and optical gelatin-based phantoms, Proc. SPIE, 10878, 108784A, doi: 10.1117/12.2507938

K. Bliznakova, N. Dukov, Z. Bliznakov, V. Petkova, V. Nastev, V. Eleftheriadis, P. Papadimitroulas, N. Okkalidis, E, Ivanova, T. Teneva, G. Todorov, G. Mettivier, P. Russo, Assessment of physical phantoms produced in the PHENOMENO project utilizing three fused filament fabrication approaches, Physica Medica, 136, 2025, 105061, doi:10.1016/j.ejmp.2025.105061

E. Colvill, M. Krieger, P. Bosshard, P. Steinacher, B. A. R. Schnidrig, T. Parkel, I. Stergiou, Y. Zhang, Ma. Peroni, S. Safai, D. C. Weber1, A. Lomax, G. Fatto, Anthropomorphic phantom for deformable lung and liver CT and MR imaging for radiotherapy, Phys. Med. Biol., 65, 2020, 07NT02, doi: 10.1088/1361-6560/ab7508

K. Mei, M. Geagan, L. Roshkovan, H. I. Litt, G. J. Gang, N. Shapira, J. W. Stayman, P. B. Noël, Three-dimensional printing of patient-specific lung phantoms for CT imaging: Emulating lung tissue with accurate attenuation profiles and textures, Med. Phys. 49(2), 2022, 825-835, doi:10.1002/mp.15407

J. Lai, C. Wang, M. Wang, 3D printing in biomedical engineering: Processes, materials, and applications, Appl. Phys. Rev. 8(2), 2021, 021322, doi: 10.1063/5.0024177

Downloads

Published

2026-01-03

Issue

Section

Articles