ANTIOXIDANT CAPACITY OF (KLAKLAK)₂ BIOCONJUGATES ASSESSED BY THE ELECTRON-TRANSFER METHODS FRAP AND CUPRAC

Authors

  • Yoana Stoyanova Department of Biotechnology, University of Chemical Technology and Metallurgy
  • Sirine Jaber Department of Biotechnology, University of Chemical Technology and Metallurgy
  • Emilia Naydenova Department of Organic Chemistry, University of Chemical Technology and Metallurgy
  • Nelly Georgieva Department of Biotechnology, University of Chemical Technology and Metallurgy
  • Dancho Danalev Department of Biotechnology, University of Chemical Technology and Metallurgy

DOI:

https://doi.org/10.59957/jctm.v60.i6.2025.2

Keywords:

antioxidant peptides, caffeic acid, FRAP, CUPRAC

Abstract

Oxidative stress and metal-driven redox processes are key contributors to the pathogenesis of chronic diseases and cancer, motivating the search for novel antioxidant molecules. In this study, the antioxidant potential of a series of synthetic peptides previously reported to possess antitumor and antibacterial properties was evaluated using two complementary electron-transfer assays: ferric reducing antioxidant power (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC). Both assays were calibrated against caffeic acid, and results were expressed as caffeic acid equivalents (CAE).

The FRAP assay revealed substantial differences in reducing activity, with Si8 exhibiting the highest value (0.558 ± 0.132), followed by Si12 (0.478 ± 0.0240), Si10 (0.293 ± 0.0220), and Si15 (0.250 ± 0.0200), whereas Si1 (0.00439 ± 0.00240) and Si11 (0.00260 ± 0.000500) showed negligible responses. A comparable pattern was observed in the CUPRAC assay, where Si8 again displayed the strongest reducing capacity (0.381 ± 0.0948), with Si12 (0.290 ± 0.0225), Si15 (0.262 ± 0.0223), and Si10 (0.224 ± 0.0290) also demonstrating appreciable activity, while Si1 (0.001800 ± 0.000400) and Si11 (0.0132 ± 0.000500) remained inactive.

The combined application of FRAP and CUPRAC provided complementary and reproducible measures of peptide antioxidant capacity, establishing a framework for systematic characterization of redox-active peptides in relation to oxidative stress.

References

N. Chandimali, S.G. Bak, E.H. Park, H.-J. Lim, Y.-S. Won, E.-K. Kim, S.-I. Park, S.J. Lee, Free radicals and their impact on health and antioxidant defenses: a review, Cell Death Discovery, 11, 1, 2025, 19. https://doi.org/10.1038/s41420-024-02278-8

E. Di Carlo, C. Sorrentino, Oxidative stress and age-related tumors, Antioxidants, 13, 9, 2024, 1109. https://doi.org/10.3390/antiox13091109

S.G. Tumilaar, A. Hardianto, H. Dohi, D. Kurnia, A comprehensive review of free radicals, oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds, Journal of Chemistry, 2024, 1–21. https://doi.org/10.1155/2024/5594386

K. Li, Z. Deng, C. Lei, X. Ding, J. Li, C. Wang, The role of oxidative stress in tumorigenesis and progression, Cells, 13, 5, 2024, 441. https://doi.org/10.3390/cells13050441

N. Ghadiri, M. Javidan, S. Sheikhi, Ö. Taştan, A. Parodi, Z. Liao, M. Tayybi Azar, M. Ganjalıkhani-Hakemi, Bioactive peptides: an alternative therapeutic approach for cancer management, Frontiers in Immunology, 15, 2024, 1310443. https://doi.org/10.3389/fimmu.2024.1310443

A. Gholamian, H. MohebAlian, M. Heidarpour, Assessment of oxidative potential in culture medium conditioned by MCF7 cancer cells via FRAP and MDA assay, IJBMI, 2, 1, 2025, 1-8. https://doi.org/10.22034/ijbmi.2025.222384.

S. Puntarulo, Iron, oxidative stress and human health, Molecular Aspects of Medicine, 26, 4-5, 2005, 299-312. https://doi.org/10.1016/j.mam.2005.07.001

E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci, Oxidative stress and antioxidant defense, World Allergy Organization Journal, 5, 1, 2012, 9-19. https://doi.org/10.1097/WOX.0b013e3182439613

J.M.C. Gutteridge, B. Halliwell, Free radicals in biology and medicine, Oxford University Press, 2015. ISBN 9780191802133

İ. Gulcin, S. H. Alwasel, Metal ions, metal chelators and metal chelating assay as antioxidant method, Processes, 10, 1, 2022, 132. https://doi.org/10.3390/pr10010132

A. Shalaby, S.M.M. Shanab, Antioxidant compounds, assays of determination and mode of action, African Journal of Pharmacy and Pharmacology, 7, 10, 2013, 528-539. https://doi.org/10.5897/AJPP2013.3474

R. Apak, S. Gorinstein, V. Böhm, K. M. Schaich, M. Özyürek, K. Güçlü, Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report), Pure and Applied Chemistry, 85, 5, 2013, 957-998. https://doi.org/10.1351/PAC-REP-12-07-15

I.G. Munteanu, C. Apetrei, Analytical methods used in determining antioxidant activity: a review, International Journal of Molecular Sciences, 22, 7, 2021, 3380. https://doi.org/10.3390/ijms22073380

B. Xu, Q. Dong, C. Yu, H. Chen, Y. Zhao, B. Zhang, P. Yu, M. Chen, Advances in research on the activity evaluation, mechanism and structure-activity relationships of natural antioxidant peptides, Antioxidants, 13, 4, 2024, 479. https://doi.org/10.3390/antiox13040479

O. Ishola, I.E. Ojo, E.T. Babatunde, T.I. Aanuoluwa, T.O. Fabiyi, A.A. Adeyanju, Determination of antioxidant capacity in aqueous extracts of Corymbia citriodora using DPPH, ABTS, FRAP, TPC, and hydrogen peroxide assays, Asian Journal of Research in Biochemistry, 15, 3, 2025, 171-178. https://doi.org/10.9734/ajrb/2025/v15i3398

M.N. Alam, N.J. Bristi, M. Rafiquzzaman, Review on in vivo and in vitro methods evaluation of antioxidant activity, Saudi Pharmaceutical Journal, 21, 2, 2013, 143-152. https://doi.org/10.1016/j.jsps.2012.05.002

I.F.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay, Analytical Biochemistry, 239, 1, 1996, 70-76. https://doi.org/10.1006/abio.1996.0292

A.R. Gohari, H. Hajimehdipoor, S. Saeidnia, Y. Ajani, A. Hadjiakhoondi, Antioxidant Activity of some Medicinal Species using FRAP Assay, Journal of Medicinal Plants, 10, 37, 2011.

J. Carrasco-Castilla, A.J. Hernández-Álvarez, C. Jiménez-Martínez, C. Jacinto-Hernández, M. Alaiz, J. Girón-Calle, J. Vioque, G. Dávila-Ortiz, Antioxidant and metal chelating activities of Phaseolus vulgaris L. var. Jamapa protein isolates, phaseolin and lectin hydrolysates, Food Chemistry, 131, 4, 2012, 1157-1164. https://doi.org/10.1016/j.foodchem.2011.09.084

R. Sánchez-Vioque, M. F. Rodríguez-Conde, J. V. Reina-Ureña, M. A. Escolano-Tercero, D. Herraiz-Peñalver, O. Santana-Méridas, In vitro antioxidant and metal chelating properties of corm, tepal and leaf from saffron (Crocus sativus L.), Industrial Crops and Products, 39, 2012, 149–153. https://doi.org/10.1016/j.indcrop.2012.02.028

N. Liang, D. Kitts, Antioxidant property of coffee components: assessment of methods that define mechanisms of action, Molecules, 19, 11, 2014, 19180-19208. https://doi.org/10.3390/molecules191119180

I.F.F. Benzie, M. Devaki, The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: concepts, procedures, limitations and applications, Measurement of Antioxidant Activity & Capacity, John Wiley & Sons, Chichester, UK, 2017, 77-106. https://doi.org/10.1002/9781119135388.ch5

R. Apak, K. Güçlü, M. Özyürek, S.E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem., 52, 26, 2004, 7970-7981. https://doi.org/10.1021/jf048741x

R. Apak, K. Güçlü, B. Demirata, M. Özyürek, S.E. Çelik, B. Bektaşoğlu, K.I. Berker, D. Özyurt, Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay, Molecules, 12, 7, 2007, 1496-1547. https://doi.org/10.3390/12071496

M. Özyürek, K. Güçlü, E. Tütem, K.S. Başkan, E. Erçağ, S. Esin Çelik, S. Baki, L. Yıldız, Ş. Karaman, R. Apak, A comprehensive review of CUPRAC methodology, Analytical Methods, 3, 11, 2011, 2439. https://doi.org/10.1039/c1ay05320e

R. Apak, K. Güçlü, M. Özyürek, B. Bektas¸oğlu, M. Bener, Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts, in: Advanced Protocols in Oxidative Stress I, Humana Press, Totowa, NJ, 477, 2008, 163-193. https://doi.org/10.1007/978-1-60327-517-0_14

S. D. Çekiç, K. S. Başkan, E. Tütem, R. Apak, Modified cupric reducing antioxidant capacity (CUPRAC) assay for measuring the antioxidant capacities of thiol-containing proteins in admixture with polyphenols, Talanta, 79, 2, 2009, 344-351. https://doi.org/10.1016/j.talanta.2009.03.061

H. Liu, J. Cao, W. Jiang, Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars, LWT - Food Science and Technology, 63, 2, 2015, 1042-1048. https://doi.org/10.1016/j.lwt.2015.04.052

J.S. Santos, V.R. Alvarenga Brizola, D. Granato, High-throughput assay comparison and standardization for metal chelating capacity screening: a proposal and application, Food Chemistry, 214, 2017, 515-522. https://doi.org/10.1016/j.foodchem.2016.07.091

G.L. Smith, A.A. Reutovich, A.K. Srivastava, R.E. Reichard, C.H. Welsh, A. Melman, F. Bou-Abdallah, Complexation of ferrous ions by ferrozine, 2,2′-bipyridine and 1,10-phenanthroline: implication for the quantification of iron in biological systems, Journal of Inorganic Biochemistry, 220, 2021, 111460. https://doi.org/10.1016/j.jinorgbio.2021.111460

I. Gulcin, Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid), Toxicology, 217, 2-3, 2006, 213-220. https://doi.org/10.1016/j.tox.2005.09.011

A. Stasiłowicz-Krzemień, N. Rosiak, A. Miklaszewski, J. Cielecka-Piontek, Screening of the anti-neurodegenerative activity of caffeic acid after introduction into inorganic metal delivery systems to increase its solubility as the result of a mechanosynthetic approach, International Journal of Molecular Sciences, 24, 11, 2023, 9218. https://doi.org/10.3390/ijms24119218

D. Skroza, V. Šimat, L. Vrdoljak, N. Jolić, A. Skelin, M. Čagalj, R. Frleta, I. Generalić Mekinić, Investigation of antioxidant synergisms and antagonisms among phenolic acids in the model matrices using FRAP and ORAC methods, Antioxidants, 11, 9, 2022, 1784. https://doi.org/10.3390/antiox11091784

Y. Zhang, Y. Li, Z. Quan, P. Xiao, J.-A. Duan, New insights into antioxidant peptides: an overview of efficient screening, evaluation models, molecular mechanisms, and applications, Antioxidants, 13, 2, 2024, 203. https://doi.org/10.3390/antiox13020203

Y. Hu, C. Ni, Y. Wang, X. Yu, H. Wu, J. Tu, C. Li, Z. Xiao, L. Wen, Research progress on the preparation and function of antioxidant peptides from walnuts, International Journal of Molecular Sciences, 24, 19, 2023, 14853. https://doi.org/10.3390/ijms241914853

J. Lu, Y. Guo, A. Muhmood, B. Zeng, Y. Qiu, P. Wang, L. Ren, Probing the antioxidant activity of functional proteins and bioactive peptides in Hermetia illucens larvae fed with food wastes, Scientific Reports, 12, 1, 2022, 2799. https://doi.org/10.1038/s41598-022-06668-9

M. Pan, K. Liu, J. Yang, S. Liu, S. Wang, S. Wang, Advances on food-derived peptidic antioxidants - a review, Antioxidants, 9, 9, 2020, 799. https://doi.org/10.3390/antiox9090799

Y. Zhu, F. Lao, X. Pan, J. Wu, Food protein-derived antioxidant peptides: molecular mechanism, stability and bioavailability, Biomolecules, 12, 11, 2022, 1622. https://doi.org/10.3390/biom12111622

R. Liu, L. Xing, Q. Fu, G. Zhou, W. Zhang, A review of antioxidant peptides derived from meat muscle and by-products, Antioxidants, 5, 3, 2016, 32. https://doi.org/10.3390/antiox5030032

S. Jaber, I. Iliev, T. Angelova, V. Nemska, I. Sulikovska, E. Naydenova, N. Georgieva, I. Givechev, I. Grabchev, D. Danalev, Synthesis, antitumor and antibacterial studies of new shortened analogues of (KLAKLAK)2-NH2 and their conjugates containing unnatural amino acids, Molecules, 26, 4, 2021, 898. https://doi.org/10.3390/molecules26040898

S. Jaber, V. Nemska, I. Iliev, E. Ivanova, T. Foteva, N. Georgieva, I. Givechev, E. Naydenova, V. Karadjova, D. Danalev, Synthesis and biological studies on (KLAKLAK)2-NH2 analog containing unnatural amino acid β-Ala and conjugates with second pharmacophore, Molecules, 26, 23, 2021, 7321. https://doi.org/10.3390/molecules26237321

S. Jaber, V. Nemska, I. Iliev, E. Ivanova, T. Foteva, N. Georgieva, I. Givechev, D. Tanev, E. Naydenova, D. Danalev, Synthesis, antiproliferative and antimicrobial activities of (KLAKLAK)2-NH2 analogue containing nor-Leu and its conjugates with a second pharmacophore, Biotechnology & Biotechnological Equipment, 37, 1, 2023, 151-158. https://doi.org/10.1080/13102818.2022.2162965

R. Apak, M. Bener, S.E. Çelik, B. Bekdeşer, F.B. Şen, The CUPRAC method, its modifications and applications serving green chemistry, in: Green Analytical Chemistry, Elsevier, 2025, 357–383. https://doi.org/10.1016/B978-0-443-16122-3.00007-X

D. Zielińska, H. Zieliński, J.M. Laparra-Llopis, D. Szawara-Nowak, J. Honke, J.A. Giménez-Bastida, Caffeic acid modulates processes associated with intestinal inflammation, Nutrients, 13, 2, 2021, 554. https://doi.org/10.3390/nu13020554

Downloads

Published

2025-11-02

Issue

Section

Articles