RADICAL-SCAVENGING ACTIVITY OF (KLAKLAK)₂ BIOCONJUGATES WITH CAFFEIC ACID

Authors

  • Yоana Stoyanova Department of Biotechnology University of Chemical Technology and Metallurgy
  • Sirine Jaber Department of Biotechnology University of Chemical Technology and Metallurgy
  • Yordan Dinev Faculty of Biology, Sofia University “St. Kliment Ohridski
  • Emilia Naydenova Department of Organic Chemistry University of Chemical Technology and Metallurgy
  • Nelly Georgieva Department of Biotechnology University of Chemical Technology and Metallurgy
  • Dancho Danalev Department of Biotechnology University of Chemical Technology and Metallurgy

DOI:

https://doi.org/10.59957/jctm.v60.i6.2025.4

Keywords:

antitumor peptides, antioxidant peptides, caffeic acid, DPPH method

Abstract

Free oxygen radicals released in the body as a result of various metabolic processes could lead to the so-called oxidative stress in cells, which is a precursor to various types of cancer. Protecting cells from oxidative stress is an important step in the prevention of cancer. Nature has a large supply of compounds with powerful antioxidant properties. One of them is caffeic acid. In the present study, caffeic acid was combined to obtain bioconjugates with analogs of the natural peptide with proven antitumor properties (KLAKLAK)₂. Here we report the antioxidant potential of these molecules as it was investigated with the well-known from the literature DPPH method, in search of a synergistic effect between the two pharmacophores of the molecule. The obtained results identify Si18 (Caf-(KnLAKnLAK)2-NH2) as the lead candidate approaching the caffeic acid benchmark under the tested conditions with EC₅₀ = 0.0178 mM.

References

S. Goldschmidt, K. Renn. Zweiwertiger Stickstoff: Über das α,α-Diphenyl-β-trinitrophenyl-hydrazyl. (IV. Mitteilung über Amin-Oxydation). Berichte der Deutschen Chemischen Gesellschaft (A/B), 1922, 628-643. https://doi.org/10.1002/cber.19220550308

M.S. Blois. Antioxidant determinations by the use of a stable free radical, Nature, 1958, 1199-1200. https://doi.org/10.1038/1811199a0

W. Brand-Williams, M.E. Cuvelier, C. Berset. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 1, 1995, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

M.C. Foti, Use and abuse of the DPPH• radical, J. Agric. Food Chem., 63, 40, 2015, 8765-8776. https://doi.org/10.1021/acs.jafc.5b03839

P. Ionita, The chemistry of DPPH· free radical and congeners. International Journal of Molecular Sciences, 22, 4, 2021, 1545, https://doi.org/10.3390/ijms22041545

P. Molyneux, The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity, Songklanakarin J. Sci. Technol., 26, 2, 2004, 211-219.

İ. Gülçin, S.H. Alwasel. DPPH radical scavenging assay, Processes, 11, 8, 2023, 2248. https://doi.org/10.3390/pr11082248

D. Peshev, L.G. Peeva, G. Peev, I.I.R. Baptista, A.T. Boam, Application of organic solvent nanofiltration for concentration of antioxidant extracts of rosemary (Rosmarinus officinalis L.), Chem. Eng. Res. Des., 89, 3, 2011, 318-327. https://doi.org/10.1016/j.cherd.2010.07.002

D. Peshev, E. Eichner, M. Goslinska, S. Pietsch, Y. Trambabova, T. Terzieva, N. Georgieva, S. Heinrich, Particle formulation of hydroalcoholic rosemary (Rosmarinus officinalis L.) extracts using a spouted bed, Particuology, 51, 2020, 26-34. https://doi.org/10.1016/j.partic.2019.10.002

K. Mishra, H. Ojha, N. K. Chaudhury. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results, Food Chemistry, 130, 4, 2012, 1036-1043. https://doi.org/10.1016/j.foodchem.2011.07.127

S.B. Kedare, R.P. Singh. Genesis and development of DPPH method of antioxidant assay, J. Food Sci. Technol., 48, 4, 2011, 412-422. https://doi.org/10.1007/s13197-011-0251-1

N.A. Lazarova-Zdravkova, D.G. Tsanova, Y.D. Stoyanova, C.P. Chilev, N.V. Georgieva, D.T. Peshev, Study of the biological activity of essential oils-water mixtures, Food Sci. Appl. Biotechnol., 4, 1, 2021, 48-56. https://doi.org/10.30721/fsab2021.v4.i1.130

Y. Stoyanova, N. Lazarova-Zdravkova, D. Peshev, Valorisation via nanofiltration of the antioxidant residual water from industrial hydrodistillation of Rosa damascena Mill. Petals, J. Chem. Technol. Metall., 60, 1, 2025, 3-10. https://doi.org/10.59957/jctm.v60.i1.2025.1

Y. Stoyanova, N. Lazarova-Zdravkova, D. Peshev, Is membrane filtration applicable for the recovery of biologically active substances from spent lavender? Membranes, 15, 1, 2025, 21. https://doi.org/10.3390/membranes15010021

R. Apak, S. Gorinstein, V. Böhm, K. M. Schaich, M. Özyürek, K. Güçlü, Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report), Pure and Applied Chemistry, 85, 5, 2013, 957-998. https://doi.org/10.1351/PAC-REP-12-07-15

N. Rajendra Prasad, A. Karthikeyan, S. Karthikeyan, Bandugula Venkata Reddy, Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line, Mol. Cell Biochem., 349, 2011, 11-19. 10.1007/s11010-010-0655-7

L.W. Morton, K.D. Croft, I.B. Puddey, L. Byrne, Phenolic acids protect low density lipoproteins from peroxynitrite-mediated modification in vitro, Redox Rep., 5, 2000, 124-125

D.S. Dezmirean, A.R. Moise, C.M. Mihai, L.S. Laslo, L.A. Mărghitaș, DPPH method for evaluation of propolis antioxidant activity, 66, 2009, 253-258

İ. Gülçin, Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217, 2-3, 2006, 213-220. https://doi.org/10.1016/j.tox.2005.09.011

Y. Carmona-Jiménez, M.V. García-Moreno, J.M. Igartuburu, C.G. Barroso, Simplification of the DPPH assay for estimating the antioxidant activity of wine and wine by-products, Food Chemistry, 165, 2014, 198-204. https://doi.org/10.1016/j.foodchem.2014.05.106

S. Chakrabarti, F. Jahandideh, J. Wu, Food-derived bioactive peptides on inflammation and oxidative stress, BioMed Research International, 2014, 1, 2014, 608979. https://doi.org/10.1155/2014/608979

R. Liu, L. Xing, Q. Fu, G. Zhou, W. Zhang, A review of antioxidant peptides derived from meat muscle and by-products, Antioxidants, 5, 3, 2016, 32. https://doi.org/10.3390/antiox5030032

M. Pan, K. Liu, J. Yang, S. Liu, S. Wang, S. Wang, Advances on food-derived peptidic antioxidants - A review. Antioxidants, 9, 9, 2020, 799. https://doi.org/10.3390/antiox9090799

J. Lu, Y. Guo, A. Muhmood, B. Zeng, Y. Qiu, P. Wang, L. Ren, Probing the antioxidant activity of functional proteins and bioactive peptides in Hermetia illucens larvae fed with food waste, Scientific Reports, 12, 1, 2022, 2799. https://doi.org/10.1038/s41598-022-06668-9

Y. Zhu, F. Lao, X. Pan, J. Wu, Food protein-derived antioxidant peptides: molecular mechanism, stability and bioavailability, Biomolecules, 12, 11, 2022, 1622. https://doi.org/10.3390/biom12111622

Y. Hu, C. Ni, Y. Wang, Y. Yu, H. Wu, J. Tu, C. Li, Z. Xiao, L. Wen, Research progress on the preparation and function of antioxidant peptides from walnuts, Int. J. Mol. Sci., 24, 19, 2023, 14853. https://doi.org/10.3390/ijms241914853

Y. Zhang, Y. Li, Z. Quan, P. Xiao, J.-A. Duan, New insights into antioxidant peptides: an overview of efficient screening, evaluation models, molecular mechanisms, and applications, Antioxidants, 13, 2, 2024, 203. https://doi.org/10.3390/antiox13020203

S. Jaber, I. Iliev, Ts. Angelova, V. Nemska, I. Sulikovska, E. Naydenova, N. Georgieva, I. Givechev, I. Grabchev, D. Danalev, Synthesis, Antitumor and Antibacterial Studies of New Shortened Analogues of (KLAKLAK)2-NH2 and Their Conjugates Containing Unnatural Amino Acids, Molecules, 26, 2021, 898. https://doi.org/10.3390/molecules26040898;

S. Jaber, V. Nemska, I. Iliev, E. Ivanova, Ts. Foteva, N. Georgieva, I. Givechev, E. Naydenova, V. Karadjova, D. Danalev, Synthesis and Biological Studies on (KLAKLAK)2-NH2 Analog Containing Unnatural Amino Acid β-Ala and Conjugates with Second Pharmacophore, Molecules, 26, 2021, 7321. https://doi.org/10.3390/molecules26237321;

S. Jaber, V. Nemska, I. Iliev, E. Ivanova, Ts. Foteva, N. Georgieva, I. Givechev, D. Tanev, E. Naydenova, D. Danalev, Synthesis, antiproliferative and antimicrobial activities of (KLAKLAK)2-NH2 analogue containing nor-Leu and its conjugates with a second pharmacophore, Biotechnology & Biotechnological Equipment, 2023, 151-158. https://doi.org/10.1080/13102818.2022.2162965

K. Pyrzynska, A. Pękal. Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples, Analytical Methods, 5, 17, 2013, 4288-4295. https://doi.org/10.1039/C3AY40367J

J. Xie, K. M. Schaich. Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity, J. Agric. Food Chem., 62, 19, 2014,4251-4260. https://doi.org/10.1021/jf500180u

T. Seal, N. Halder, K. Chaudhuri, S.N. Sinha. Effect of solvent extraction system on the antioxidant activities of algae, Int. J. Pharm. Pharm. Sci., 6, 10, 2014, 242-245

S. Baliyan, R. Mukherjee, A. Priyadarshini, A. Vibhuti, A. Gupta, R.P. Pandey, C.-M. Chang, Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa, Molecules, 27, 4, 2022, 1326. https://doi.org/10.3390/molecules27041326

S. Ouahhoud, A. Khoulati, S. Kadda, N. Bencheikh, S. Mamri, A. Ziani, S. Baddaoui, F.-E. Eddabbeh, I. Lahmass, R. Benabbes, R. Addi, C. Hano, A. Asehraou, E. Saalaoui, Antioxidant activity, metal chelating ability and DNA protective effect of the hydroethanolic extracts of Crocus sativus stigmas, tepals and leaves. Antioxidants, 11, 5, 2022, 932. https://doi.org/10.3390/antiox11050932

G. Marinova, V. Batchvarov, Evaluation of the methods for determination of the free radical scavenging activity by DPPH, Bulg. J. Agric. Sci., 17, 1, 2011, 11-24.

M.N. Alam, N.J. Bristi, M. Rafiquzzaman, Review on in vivo and in vitro methods evaluation of antioxidant activity, Saudi Pharm. J., 21, 2, 2013, 143-152. https://doi.org/10.1016/j.jsps.2012.05.002

F. Al-Rimawi, S. Rishmawi, S. H. Ariqat, M. F. Khalid, I. Warad, Z. Salah, Anticancer activity, antioxidant activity, and phenolic and flavonoids content of wild Tragopogon porrifolius plant extracts, Evid. Based Complement Alternat. Med., 2016. https://doi.org/10.1155/2016/9612490

Z. Akar, M. Küçük, H. Doğan. A new colorimetric DPPH• scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs, J. Enzyme Inhib. Med. Chem., 32, 1, 2017, 640-647. https://doi.org/10.1080/14756366.2017.1284068

I.G. Munteanu, C. Apetrei, Analytical methods used in determining antioxidant activity: a review, Int. J. Mol. Sci., 22, 7, 2021, 3380. https://doi.org/10.3390/ijms22073380

Downloads

Published

2025-11-02

Issue

Section

Articles