PYRIDAZINONE AS VERSATILE SCAFFOLD IN DRUG DISCOVERY: VIEW ON CURRENT DEVELOPMENT

Authors

  • Boryana Borisova University of Chemical Technology and Metallurgy
  • Marie Laronze-Cochard Université de Reims Champagne-Ardenne Institut de Chimie Moléculaire de Reims (ICMR) - UMR CNRS 7312 UFR de Pharmacie
  • Stéphane Gérard Université de Reims Champagne-Ardenne Institut de Chimie Moléculaire de Reims (ICMR) - UMR CNRS 7312 UFR de Pharmacie

DOI:

https://doi.org/10.59957/jctm.v61.i1.2026.1

Keywords:

pyridazinone, biological activity, pharmaceutical scaffold, drug discovery

Abstract

In modern medicinal chemistry, the pyridazinone core has emerged as a „versatile“ and privileged scaffold for the design of new therapeutic agents. Over the past decades, numerous pyridazinone derivatives have exhibited significant biological activities across diverse therapeutic areas including antiviral, antimicrobial, cardiovascular, anti-inflammatory, anticancer, and central nervous system disorders. This review discusses the structural diversity, structure-activity relationships (SAR), and pharmacological relevance of pyridazinone-based molecules. Furthermore, it highlights recent advances in hybrid drug design, where the pyridazinone moiety is combined with another pharmacophore to produce synergistic effect that enhance the biological activities of both components towards more than one target. Such hybridization strategy show the potential of pyridazinone scaffold as valuable templates for the development of multifunctional therapeutic agents.

References

M. Imran, M. Asif, Biologically Active Pyridazines and Pyridazinone Derivatives: A Scaffold for the Highly Functionalized Compounds, Russ. J. Bioorg. Chem., 46, 2020, 726–744. https://doi.org/10.1134/S1068162020050155

Pyridazinones: A versatile scaffold in the development of potential target‐based novel anticancer agents, J. Heterocycl. Chem. 60, 2023, 929–949. https://doi.org/10.1002/jhet.4589

J. Bernstein, Azelastine hydrochloride: a review of pharmacology, pharmacokinetics, clinical efficacy and tolerability, Curr. Med. Res. Opin., 23, 2007, 2441–2452. https://doi.org/10.1185/030079907X226302

L. Herman, Z. Bruss, V. Tivakaran, Hydralazine, in: StatPearls, StatPearls Publishing, Treasure Island, 2025. http://www.ncbi.nlm.nih.gov/books/NBK470296/ (accessed October 26, 2025).

H. Ueno, S. Kondo, S. Yoshikawa, K. Inoue, V. Andre, M. Tajimi, H. Murakami, A phase I and pharmacokinetic study of taladegib, a Smoothened inhibitor, in Japanese patients with advanced solid tumors, Invest. New Drugs, 36, 2018, 647–656. https://doi.org/10.1007/s10637-017-0544-y

W. Akhtar, M. Shaquiquzzaman, M. Akhter, G. Verma, M. Khan, M. Alam, The therapeutic journey of pyridazinone, Eur. J. Med. Chem., 123, 2016, 256–281. https://doi.org/10.1016/j.ejmech.2016.07.061

S. Dubey, P. Bhosle, Pyridazinone: an important element of pharmacophore possessing broad spectrum of activity, Med. Chem. Res., 24, 2015, 3579–3598. https://doi.org/10.1007/s00044-015-1398-5

D. Ellis, J. Blazel, S. Webber, C. Tran, P. Dragovich, Z. Sun, F. Ruebsam, H. McGuire, A. Xiang, J. Zhao, L. Li, Y. Zhou, Q. Han, C. Kissinger, R. Showalter, M. Lardy, A. Shah, M. Tsan, R. Patel, L. LeBrun, R. Kamran, D. Bartkowski, T. Nolan, D. Norris, M. Sergeeva, L. Kirkovsky, 4-(1,1-Dioxo-1,4-dihydro-1lambda6-benzo[1,4]thiazin-3-yl)-5-hydroxy-2H-pyridazin-3-ones as potent inhibitors of HCV NS5B polymerase, Bioorg. Med. Chem. Lett., 18, 2008, 4628–4632. https://doi.org/10.1016/j.bmcl.2008.07.014

D. Li, P. Zhan, H. Liu, C. Pannecouque, J. Balzarini, E. De Clercq, X. Liu, Synthesis and biological evaluation of pyridazine derivatives as novel HIV-1 NNRTIs, -yl)-5-hydroxy-2H-pyridazin-3-ones as potent inhibitors of HCV NS5B polymerase, Bioorg. Med. Chem., 21, 2013, 2128–2134. https://doi.org/10.1016/j.bmc.2012.12.049

W. Xing, J. Ai, S. Jin, Z. Shi, X. Peng, L. Wang, Y. Ji, D. Lu, Y. Liu, M. Geng, Y. Hu, Enhancing the cellular anti-proliferation activity of pyridazinones as c-met inhibitors using docking analysis, Eur. J. Med. Chem., 95, 2015, 302–312. https://doi.org/10.1016/j.ejmech.2015.03.041

D. Dorsch, O. Schadt, F. Stieber, M. Meyring, U. Grädler, F. Bladt, M. Friese-Hamim, C. Knühl, U. Pehl, A. Blaukat, Identification and optimization of pyridazinones as potent and selective c-Met kinase inhibitors, Bioorg. Med. Chem. Lett., 25, 2015, 1597–1602. https://doi.org/10.1016/j.bmcl.2015.02.002

S. Zhou, H. Liao, C. He, Y. Dou, M. Jiang, L. Ren, Y. Zhao, P. Gong, Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing pyridazinone moiety as potential antitumor agents, Eur. J. Med. Chem., 83, 2014, 581–593. https://doi.org/10.1016/j.ejmech.2014.06.068

E. Amin, A.-A. Abdel-Alim, S. Abdel-Moty, A.-N. El-Shorbagi, M. Abdel-Rahman, Synthesis of new 4,5-3(2H)pyridazinone derivatives and their cardiotonic, hypotensive, and platelet aggregation inhibition activities, Arch. Pharm. Res., 33, 2010, 25–46. https://doi.org/10.1007/s12272-010-2222-x

Y. Boukharsa, B. Meddah, R. Tiendrebeogo, A. Ibrahimi, J. Taoufik, Y. Cherrah, A. Benomar, M.E.A. Faouzi, M. Ansar, Synthesis and antidepressant activity of 5-(benzo[b]furan-2-ylmethyl)-6-methylpyridazin-3(2H)-one derivatives, Med. Chem. Res., 25, 2016, 494–500. https://doi.org/10.1007/s00044-015-1490-x

A. Akahane, H. Katayama, T. Mitsunaga, T. Kato, T. Kinoshita, Y. Kita, T. Kusunoki, T. Terai, K. Yoshida, Y. Shiokawa, Discovery of 6-oxo-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1(6H)- pyridazinebutanoic acid (FK 838): a novel non-xanthine adenosine A1 receptor antagonist with potent diuretic activity, J. Med. Chem., 42, 1999 779–783. https://doi.org/10.1021/jm980671w

I. Allart-Simon, A. Moniot, N. Bisi, M. Ponce-Vargas, S. Audonnet, M. Laronze-Cochard, J. Sapi, E. Hénon, F. Velard, S. Gérard, Pyridazinone derivatives as potential anti-inflammatory agents: synthesis and biological evaluation as PDE4 inhibitors, RSC Med. Chem., 12, 2021, 584–592. https://doi.org/10.1039/d0md00423e.

C. Barberot, A. Moniot, I. Allart-Simon, L. Malleret, T. Yegorova, M. Laronze-Cochard, A. Bentaher, M. Médebielle, J.-P. Bouillon, E. Hénon, J. Sapi, F. Velard, S. Gérard, Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents, Eur. J. Med. Chem., 146, 2018, 139–146. https://doi.org/10.1016/j.ejmech.2018.01.035

S. Ovais, K. Javed, S. Yaseen, R. Bashir, P. Rathore, R. Yaseen, A.D. Hameed, M. Samim, Synthesis, antiproliferative and anti-inflammatory activities of some novel 6-aryl-2-(p-(methanesulfonyl)phenyl)-4,5-dihydropyridazi-3(2H)-ones, Eur. J. Med. Chem., 67, 2013, 352–358. https://doi.org/10.1016/j.ejmech.2013.06.050

R. Bashir, S. Yaseen, S. Ovais, S. Ahmad, H. Hamid, M. Alam, M. Samim, K. Javed, Synthesis and biological evaluation of some novel sulfamoylphenyl-pyridazinone as anti-inflammatory agents (Part-II *), J. Enzyme Inhib. Med. Chem., 27, 2012, 92–96. https://doi.org/10.3109/14756366.2011.577036

R. Baker, A. Mahmud, I. Miller, M. Rajeev, F. Rasambainarivo, B. Rice, S. Takahashi, A. Tatem, C. Wagner, L.-F. Wang, A. Wesolowski, C. Metcalf, Infectious disease in an era of global change, Nat. Rev. Microbiol., 20, 2022, 193–205. https://doi.org/10.1038/s41579-021-00639-z

Z. Wang, M. Wang, X. Yao, Y. Li, J. Tan, L. Wang, W. Qiao, Y. Geng, Y. Liu, Q. Wang, Design, synthesis and antiviral activity of novel pyridazines, Eur. J. Med. Chem., 54, 2012, 33–41. https://doi.org/10.1016/j.ejmech.2012.04.020

G. Zhou, P. Ting, R. Aslanian, J. Cao, D. Kim, R. Kuang, J. Lee, J. Schwerdt, H. Wu, R. Jason Herr, A. Zych, J. Yang, S. Lam, S. Wainhaus, T. Black, P. McNicholas, Y. Xu, S. Walker, SAR studies of pyridazinone derivatives as novel glucan synthase inhibitors, Bioorg. Med. Chem. Lett., 21, 2011, 2890–2893.

R. Kuang, H. Wu, P. Ting, R. Aslanian, J. Cao, D. Kim, J. Lee, J. Schwerdt, G. Zhou, R. Jason Herr, A. Zych, J. Yang, S. Lam, D. Jenkins, S. Sakwa, S. Wainhaus, T. Black, A. Cacciapuoti, P. McNicholas, Y. Xu, S. Walker, The optimization of pyridazinone series of glucan synthase inhibitors, Bioorg. Med. Chem. Lett., 22, 2012, 5268–5271.

M.A. Alagöz, A.G. Akdemi̇R, A.B. Özçeli̇K, B. Özçeli̇K, Z. Özdemi̇R, Studies on a novel series of 3(2H)-pyridazinones: Synthesis, molecular modelling, antimicrobial activity, Jrp 23 (2019) 960–972. https://doi.org/10.35333/jrp.2019.43

E. Sotelo, N. Fraiz, M. Yáñez, V. Terrades, R. Laguna, E. Cano, E. Raviña, Pyridazines. Part XXIX: synthesis and platelet aggregation inhibition activity of 5-substituted-6-phenyl-3(2H)-pyridazinones. Novel aspects of their biological actions, Bioorg. Med. Chem., 10, 2002, 2873–2882. https://doi.org/10.1016/S0968-0896(02)00146-3

D. Hosfield, C. Mol, Targeting inactive kinases: structure as a foundation for cancer rug discovery, in: S. Neidle (Ed.), Cancer Drug Design and Discovery, Academic Press, New York, 2008, p. 229–252. https://doi.org/10.1016/B978-012369448-5.50013-6

M. Elagawany, M. Ibrahim, H. Ahmed, A. El-Etrawy, A. Ghiaty, Z. Abdel-Samii, S. El-Feky, J. Bajorath, Design, synthesis and molecular modelling of pyridazinone and phthalazinone derivatives as protein kinases inhibitors, Bioorg. Med. Chem. Lett., 23, 2013, 2007–2013. https://doi.org/10.1016/j.bmcl.2013.02.027

Y. Liu, S. Jin, X. Peng, D. Lu, L. Zeng, Y. Sun, J. Ai, M. Geng, Y. Hu, Pyridazinone derivatives displaying highly potent and selective inhibitory activities against c-Met tyrosine kinase, Eur. J. Med. Chem., 108, 2016, 322–333. https://doi.org/10.1016/j.ejmech.2015.11.042

M. Abdelbaset, G. Abuo-Rahma, M. Abdelrahman, M. Ramadan, B. Youssif, S. Bukhari, M. Mohamed, M. Abdel-Aziz, Novel pyrrol-2(3H)-ones and pyridazin-3(2H)-ones carrying quinoline scaffold as anti-proliferative tubulin polymerization inhibitors, Bioorg. Chem., 80, 2018, 151–163. https://doi.org/10.1016/j.bioorg.2018.06.003

K. Abouzid, S.A. Bekhit, Novel anti-inflammatory agents based on pyridazinone scaffold; design, synthesis and in vivo activity, Bioorganic & Medicinal Chemistry 16 (2008) 5547–5556. https://doi.org/10.1016/j.bmc.2008.04.007.

W. Malinka, A. Redzicka, M. Jastrzębska – Więsek, B. Filipek, M. Dybała, Z. Karczmarzyk, Z. Urbańczyk-Lipkowska, P. Kalicki, Derivatives of pyrrolo[3,4-d]pyridazinone, a new class of analgesic agents, Eur. J. Med. Chem., 46, 2011, 4992–4999. https://doi.org/10.1016/j.ejmech.2011.08.006

S. Mogilski, M. Kubacka, A. Redzicka, G. Kazek, M. Dudek, W. Malinka, B. Filipek, Antinociceptive, anti-inflammatory and smooth muscle relaxant activities of the pyrrolo[3,4-d]pyridazinone derivatives: Possible mechanisms of action, Pharmacol. Biochem. Behav., 133, 2015, 99–110. https://doi.org/10.1016/j.pbb.2015.03.019

K. Ochiai, S. Takita, A. Kojima, T. Eiraku, K. Iwase, T. Kishi, A. Ohinata, Y. Yageta, T. Yasue, D. Adams, Y. Kohno, Phosphodiesterase inhibitors. Hybrid PDE3/4 inhibitors as dual bronchorelaxant/anti-inflammatory agents for inhaled administration, Bioorg. Med. Chem. Lett., 23, 2013, 375–381. https://doi.org/10.1016/j.bmcl.2012.08.121

K. Ochiai, S. Takita, A. Kojima, T. Eiraku, N. Ando, K. Iwase, T. Kishi, A. Ohinata, Y. Yageta, T. Yasue, D.R. Adams, Y. Kohno, Phosphodiesterase inhibitors. Design, synthesis and structure-activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-4,4-dimethylpyrazolones, Bioorg. Med. Chem. Lett., 22, 2012, 5833–5838

J. Moore, D. Combs, A. Tobia, Bemoradan - a novel inhibitor of the rolipram-insensitive cyclic AMP phosphodiesterase from canine heart tissue, Biochem. Pharmacol., 42, 1991, 679–683. https://doi.org/10.1016/0006-2952(91)90331-x

R. Kauffman, D. Robertson, R. Franklin, G. Sandusky Jr., F. Dies, J. McNay, J. Hayes, Indolidan: a potent, long-acting cardiotonic and inhibitor of type iv cyclic AMP phosphodiesterase, Cardiovasc. Drug Rev., 8, 1990, 303–322. https://doi.org/10.1111/j.1527-3466.1990.tb00398.x

T. Morita, K. Nakamura, T. Osuga, S. Kawamoto, S. Miki, K. Sasaoka, M. Takiguchi, Acute effects of intravenous pimobendan administration in dog models of chronic precapillary pulmonary hypertension, J. Vet. Cardiol., 32, 2020, 16–27. https://doi.org/10.1016/j.jvc.2020.09.003

D. Masarone, M. Kittleson, P. Pollesello, R. Tedford, G. Pacileo, Use of Levosimendan in Patients with Pulmonary Hypertension: What is the Current Evidence?, Drugs, 83, 2023, 195–201. https://doi.org/10.1007/s40265-022-01833-w

Ø. Ørstavik, S. Ata, J. Riise, C. Dahl, G. Andersen, F. Levy, T. Skomedal, J. Osnes, E. Qvigstad, Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account for its inotropic effect in failing human heart, Br. J. Pharmacol., 171, 2014, 5169–5181. https://doi.org/10.1111/bph.12647

M. Van der Mey, K. Bommelé, H. Boss, A. Hatzelmann, M. Van Slingerland, G. Sterk, H. Timmerman, Synthesis and Structure−Activity Relationships of cis-Tetrahydrophthalazinone/Pyridazinone Hybrids: A Novel Series of Potent Dual PDE3/PDE4 Inhibitory Agents, J. Med. Chem., 46, 2003, 2008–2016. https://doi.org/10.1021/jm030776l

K. Banner, N. Press, Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease, Br. J. Pharmacol., 157, 2009, 892–906. https://doi.org/10.1111/j.1476-5381.2009.00170.x

S. Liu, A. Veilleux, L. Zhang, A. Young, E. Kwok, F. Laliberté, C. Chung, M.R. Tota, D. Dubé, R. Friesen, Z. Huang, Dynamic activation of cystic fibrosis transmembrane conductance regulator by type 3 and type 4D phosphodiesterase inhibitors, J. Pharmacol. Exp. Ther., 314, 2005, 846–854. https://doi.org/10.1124/jpet.105.083519

Downloads

Published

2026-01-03

Issue

Section

Articles